A model is developed to analyze the effect of axial conduction on heat transfer during single-phase flow in microchannels. The axial heat conduction in the wall introduces heat flow toward the inlet section resulting in an increase in the local fluid temperature and a corresponding increase in the wall temperature. Neglecting this effect while reducing the experimental data results in a lower value of the experimental Nusselt number. The model derived in this work takes into account this effect and offers a parameter to estimate the effect introduced by the axial heat conduction effect in the wall.
References
1.
Wu
, H. Y.
, and Cheng
, P.
, 2003, “An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,” Int. J. Heat Mass Transfer
, 46
, pp. 2547
–2556
.2.
Qu
, W.
, Mala
, G. M.
, and Li
, D.
, 2000, “Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,” Int. J. Heat Mass Transfer
, 43
(21
), pp. 3925
–3936
.3.
Shen
, S.
, Xu
, J. L.
, Zhou
, J. J.
, and Chen
, Y.
, 2006, “Flow and Heat Transfer in Microchannels With Rough Wall Surface
,” Energy Convers. Manage.
, 47
(11–12
), pp. 1311
–1325
.4.
Tiselj
, I.
, Hetsroni
, G.
, Mavko
, B.
, Mosyak
, A.
, Pogrebnyak
, E.
, and Segal
, Z.
, 2004, “Effect of Axial Conduction on the Heat Transfer in Micro-Channels
,” Int. J. Heat Mass Transfer
, 47
, pp. 2551
–2565
.5.
Peng
, X. F.
, and Wang
, B. X.
, 1993, “Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,” Int. J. Heat Mass Transfer
, 36
(14
), pp. 3421
–3427
.6.
Peng
, X. F.
, and Peterson
, G. P.
, 1996, “Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,” Int. J. Heat Mass Transfer
, 39
(12
), pp. 2599
–2608
.7.
Wang
, B. X.
, and Peng
, X. F.
, 1994, “Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,” Int. J. Heat Mass Transfer
, 37
, pp. 73
–82
.8.
Lin
, T.-Y.
, and Yang
, C.-Y.
, 2007, “An Experimental Investigation on Forced Convection Heat Transfer Performance in Micro Tubes by the Method of Liquid Crystal Thermography
,” Int. J. Heat Mass Transfer
, 50
(23–24
), pp. 4736
–4742
.9.
Yang
, C. Y.
, and Lin
, T. Y.
, 2007, “Heat Transfer Characteristics of Water Flow in Microtubes
,” Exp. Therm. Fluid Sci.
, 32
(2
), pp. 432
–439
.10.
Lelea
, D.
, Nishio
, S.
, and Takano
, K.
, 2004, “The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,” Int. J. Heat Mass Transfer
, 47
(12–13
), pp. 2817
–2830
.11.
Steinke
, M. E.
, and Kandlikar
, S. G.
, 2006, “Single-Phase Liquid Friction Factors in Microchannels
,” Int. J. Therm. Sci.
, 45
, pp. 1073
–1083
.12.
Rosa
, P.
, Karayiannis
, T. G.
, and Collins
, M. W.
, 2009, “Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,” Appl. Therm. Eng.
, 29
, pp. 3447
–3468
.13.
Webb
, R. L.
, and Zhang
, M.
, 1998, “Heat Transfer and Friction in Small Diameter Channels
,” Microscale Thermophys. Eng.
, 2
, pp. 189
–202
.14.
Owhaib
, W.
, and Palm
, B.
, 2004, “Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels
,” Exp. Therm. Fluid Sci.
, 28
, pp. 105
–110
.15.
Yen
, T.-H.
, Kasagi
, N.
, and Suzuki
, Y.
, 2003, “Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,” Int. J. Multiphase Flow
, 29
(12
), pp. 1771
–1792
.16.
Kandlikar
, S. G.
, Joshi
, S.
, and Tian
, S.
, 2003, “Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,” Heat Transfer Eng.
, 24
(3
), pp. 4
–16
.17.
Muwanga
, R.
, and Hassan
, I.
, 2006, “Local Heat Transfer Measurements in Microchannels Using Liquid Crystal Thermography: Methodology Development and Validation
,” ASME J. Heat Transfer
, 128
, pp. 617
–626
.18.
Celata
, G. P.
, Cumo
, M.
, Marconi
, V.
, McPhail
, S. J.
, and Zummo
, G.
, 2006, “Microtube Liquid Single-Phase Heat Transfer in Laminar Flow
,” Int. J. Heat Mass Transfer
, 49
, pp. 3538
–3546
.19.
Davis
, E. J.
, and Gill
, W. N.
, 1970, “The Effects of Axial Conduction in the Wall on Heat Transfer With Laminar Flow
,” Int. J. Heat Mass Transfer
, 13
, pp. 459
–470
.20.
Guo
, Z.-Y.
, and Li
, Z.-X.
, 2003, “Size Effect on Microscale Single-Phase Flow and Heat Transfer
,” Int. J. Heat Mass Transfer
, 46
, pp. 149
–159
.21.
Maranzana
, G.
, Perry
, I.
, and Maillet
, D.
, 2004, “Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,” Int. J. Heat Mass Transfer
, 47
(17–18
), pp. 3993
–4004
.22.
Guo
, Z.-Y.
, and Li
, Z.-X.
, 2003, “Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,” Int. J. Heat Fluid Flow
, 24
, pp. 284
–298
.23.
Hetsroni
, G.
, Mosyak
, A.
, Pogrebnyak
, E.
, and Yarin
, L. P.
, 2005, “Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,” Int. J. Heat Mass Transfer
, 48
, pp. 5580
–5601
.24.
Yarin
, L. P.
, Mosyak
, A.
, and Hetsroni
, G.
, 2009, Fluid Flow, Heat Transfer and Boiling in Micro-Channels
, Springer
, Berlin Heidelberg
.25.
Herwig
, H.
, and Hausner
, O.
, 2003, “Critical View on ‘New Results in Micro-Fluid Mechanics’: An Example
,” Int. J. Heat Mass Transfer
, 46
, pp. 935
–937
.26.
Tso
, C. P.
, and Mahulikar
, S. P.
, 2000, “Experimental Verification of the Role of Brinkman Number in Microchannels Using Local Parameters
,” Int. J. Heat Mass Transfer
, 43
, pp. 1837
–1849
.27.
Harms
, T. M.
, Kazmierczak
, M. J.
, and Gerner
, F. M.
, 1999, “Developing Convective Heat Transfer in Deep Rectangular Microchannels
,” Int. J. Heat Fluid Flow
, 20
, pp. 149
–157
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.