A model is developed to analyze the effect of axial conduction on heat transfer during single-phase flow in microchannels. The axial heat conduction in the wall introduces heat flow toward the inlet section resulting in an increase in the local fluid temperature and a corresponding increase in the wall temperature. Neglecting this effect while reducing the experimental data results in a lower value of the experimental Nusselt number. The model derived in this work takes into account this effect and offers a parameter to estimate the effect introduced by the axial heat conduction effect in the wall.

References

1.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2547
2556
.
2.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.
3.
Shen
,
S.
,
Xu
,
J. L.
,
Zhou
,
J. J.
, and
Chen
,
Y.
, 2006, “
Flow and Heat Transfer in Microchannels With Rough Wall Surface
,”
Energy Convers. Manage.
,
47
(
11–12
), pp.
1311
1325
.
4.
Tiselj
,
I.
,
Hetsroni
,
G.
,
Mavko
,
B.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2004, “
Effect of Axial Conduction on the Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2551
2565
.
5.
Peng
,
X. F.
, and
Wang
,
B. X.
, 1993, “
Forced Convection and Flow Boiling Heat Transfer for Liquid Flowing Through Microchannels
,”
Int. J. Heat Mass Transfer
,
36
(
14
), pp.
3421
3427
.
6.
Peng
,
X. F.
, and
Peterson
,
G. P.
, 1996, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.
7.
Wang
,
B. X.
, and
Peng
,
X. F.
, 1994, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
,
37
, pp.
73
82
.
8.
Lin
,
T.-Y.
, and
Yang
,
C.-Y.
, 2007, “
An Experimental Investigation on Forced Convection Heat Transfer Performance in Micro Tubes by the Method of Liquid Crystal Thermography
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4736
4742
.
9.
Yang
,
C. Y.
, and
Lin
,
T. Y.
, 2007, “
Heat Transfer Characteristics of Water Flow in Microtubes
,”
Exp. Therm. Fluid Sci.
,
32
(
2
), pp.
432
439
.
10.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
, 2004, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2817
2830
.
11.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2006, “
Single-Phase Liquid Friction Factors in Microchannels
,”
Int. J. Therm. Sci.
,
45
, pp.
1073
1083
.
12.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
, 2009, “
Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
, pp.
3447
3468
.
13.
Webb
,
R. L.
, and
Zhang
,
M.
, 1998, “
Heat Transfer and Friction in Small Diameter Channels
,”
Microscale Thermophys. Eng.
,
2
, pp.
189
202
.
14.
Owhaib
,
W.
, and
Palm
,
B.
, 2004, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels
,”
Exp. Therm. Fluid Sci.
,
28
, pp.
105
110
.
15.
Yen
,
T.-H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2003, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
,
29
(
12
), pp.
1771
1792
.
16.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
, 2003, “
Effect of Surface Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Heat Transfer Eng.
,
24
(
3
), pp.
4
16
.
17.
Muwanga
,
R.
, and
Hassan
,
I.
, 2006, “
Local Heat Transfer Measurements in Microchannels Using Liquid Crystal Thermography: Methodology Development and Validation
,”
ASME J. Heat Transfer
,
128
, pp.
617
626
.
18.
Celata
,
G. P.
,
Cumo
,
M.
,
Marconi
,
V.
,
McPhail
,
S. J.
, and
Zummo
,
G.
, 2006, “
Microtube Liquid Single-Phase Heat Transfer in Laminar Flow
,”
Int. J. Heat Mass Transfer
,
49
, pp.
3538
3546
.
19.
Davis
,
E. J.
, and
Gill
,
W. N.
, 1970, “
The Effects of Axial Conduction in the Wall on Heat Transfer With Laminar Flow
,”
Int. J. Heat Mass Transfer
,
13
, pp.
459
470
.
20.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
, 2003, “
Size Effect on Microscale Single-Phase Flow and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
46
, pp.
149
159
.
21.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
, 2004, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.
22.
Guo
,
Z.-Y.
, and
Li
,
Z.-X.
, 2003, “
Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,”
Int. J. Heat Fluid Flow
,
24
, pp.
284
298
.
23.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
, 2005, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5580
5601
.
24.
Yarin
,
L. P.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
, 2009,
Fluid Flow, Heat Transfer and Boiling in Micro-Channels
,
Springer
,
Berlin Heidelberg
.
25.
Herwig
,
H.
, and
Hausner
,
O.
, 2003, “
Critical View on ‘New Results in Micro-Fluid Mechanics’: An Example
,”
Int. J. Heat Mass Transfer
,
46
, pp.
935
937
.
26.
Tso
,
C. P.
, and
Mahulikar
,
S. P.
, 2000, “
Experimental Verification of the Role of Brinkman Number in Microchannels Using Local Parameters
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1837
1849
.
27.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
, pp.
149
157
.
You do not currently have access to this content.