This paper experimentally investigates the effect of a turning vane in hub region on heat transfer in a multipass rectangular channel with rib-roughed wall at high rotation numbers. The experimental data were taken in the second and the third passages (aspect ratio = 2:1) connected by an 180 deg U-bend. The flow was radial inward in the second passage and was radial outward after the 180 deg U-bend in the third passage. The square-edged ribs with P/e = 8, e/Dh = 0.1, and α = 45 deg were applied on the leading and trailing surfaces of the second and the third passages. Results showed that rotation increases heat transfer on the leading surface but decreases it on the trailing surface in the second passage. In the third passage, rotation decreases heat transfer on the leading surface but increases it on the trailing surface. Without a turning vane, rotation reduces heat transfer on the trailing surface and increases it on the leading surface in the hub 180 deg turn region. After adding a half-circle-shaped turning vane, heat transfer coefficients do not change in the second passage before-turn while they are different in the turn region and after-turn region in the third passage. Regional heat transfer coefficients are correlated with rotation numbers for multipass rectangular ribbed channel with and without a turning vane.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Taslim
,
M. E.
,
Bondi
,
L. A.
, and
Kercher
,
D. M.
,
1991
, “
An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 deg Criss-Cross Ribs on Two Opposite Walls
,”
ASME J. Turbomach.
,
113
(3), pp.
346
353
.10.1115/1.2927882
3.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Passages With Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
(4), pp.
847
857
.10.1115/1.2928038
4.
Zhou
,
F.
, and
Acharya
,
S.
,
2008
, “
Heat Transfer at High Rotation Numbers in a Two-Pass 4:1 Aspect Ratio Rectangular Channel With 45 deg Skewed Ribs
,”
ASME J. Turbomach.
,
130
(2), p.
021019
.10.1115/1.2752185
5.
Johnson
,
B. V.
,
Wagner
,
J. H.
,
Steuber
,
G. D.
, and
Yeh
,
F. C.
,
1994
, “
Heat Transfer in Rotating Serpentine Passages With Selected Model Orientations for Smooth or Skewed Trip Walls
,”
ASME J. Turbomach.
,
116
(4), pp.
738
744
.10.1115/1.2929467
6.
Azad
,
G. S.
,
Uddin
,
M. J.
,
Han
,
J. C.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2002
, “
Heat Transfer in a Two-Pass Rectangular Rotating Channel With 45-deg Angled Rib Turbulators
,”
ASME J. Turbomach.
,
124
(2), pp.
251
259
.10.1115/1.1450569
7.
Al-Hadhrami
,
L. M.
,
Griffith
,
T. S.
, and
Han
,
J. C.
,
2002
, “
Heat Transfer in Two-Pass Rotating Rectangular Channels (AR = 2) With Parallel and Crossed 45 deg V-shaped Rib Turbulators
,” AIAA Paper No. A02-13915.
8.
Huh
,
M.
,
Lei
,
J.
, and
Han
,
J. C.
,
2012
, “
Influence of Channel Orientation on Heat Transfer in a Two-Pass Smooth and Ribbed Rectangular Channel (AR = 2:1) Under Large Rotation Numbers
,”
ASME J. Turbomach.
,
134
(
1
), p.
011022
.10.1115/1.4003172
9.
Han
,
J. C.
,
Chandra
,
P. R.
, and
Lau
,
S. C.
,
1988
, “
Local Heat/Mass Transfer Distributions Around Sharp 180 deg Turns in Two-Pass Smooth and Rib-Roughed Channels
,”
ASME J. Heat Transfer
,
110
(1), pp.
91
98
.10.1115/1.3250478
10.
Schabacker
,
J.
,
Bolcs
,
A.
, and
Johnson
,
B. V.
,
1998
, “
PIV Investigation of the Flow Characteristics in an Internal Coolant Passage With Two Ducts Connected by a Sharp 180 deg Bend
,” ASME Paper No. 98-GT-544.
11.
Son
,
S. Y.
,
Kihm
,
K. D.
, and
Han
,
J. C.
,
2002
, “
PIV Flow Measurements for Heat Transfer Characterization in Two-Pass Square Channels With Smooth and 90 deg Ribbed Walls
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4809
4822
.10.1016/S0017-9310(02)00192-8
12.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Lauder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(3), pp.
590
596
.10.1115/1.2836706
13.
Hwang
,
J. J.
, and
Lai
,
D. Y.
,
1998
, “
Three-Dimensional Mixed Convection in a Rotating Multi-Pass Square Channel
,”
Int. J. Heat Mass Transfer
,
41
, pp.
979
991
.10.1016/S0017-9310(97)00225-1
14.
Liou
,
T. M.
, and
Chen
,
C. C.
,
1999
, “
Heat Transfer in a Rotating Two-Pass Smooth Passage With a 180 deg Turn
,”
Int. J. Heat Mass Transfer
,
42
, pp.
231
247
.10.1016/S0017-9310(98)00148-3
15.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2007
, “
Analysis of Turbulent Flow in 180 deg Turning Ducts With and Without Guide Vanes
,”
ASME
Paper No. GT2007-28173.10.1115/GT2007-28173
16.
Zehnder
,
F.
,
Schüler
,
M.
,
Weigand
,
B.
,
von Wolfersdorf
,
J.
, and
Neumann
,
S. O.
,
2009
, “
The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel
,”
ASME
Paper No. GT2009-59482.10.1115/GT2009-59482
17.
Chen
,
W.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2010
, “
Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System
,”
ASME
Paper No. GT2010-22273.10.1115/GT2010-22273
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainty in Single-Simple Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
19.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augment Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.10.2514/2.1964
20.
Lei
,
J.
,
Li
,
S. J.
,
Han
,
J. C.
,
Zhang
,
L.
, and
Moon
,
H. K.
,
2012
, “
Heat Transfer in Rotating Multi-Pass Rectangular Ribbed Channel With and Without a Turning Vane
,” ASME Paper No. GT2012-69139.
You do not currently have access to this content.