Abstract

As a main part of multichannel wall jet cooling structure, channel impingement cooling is a cooling strategy of great concern at the leading edge inside of the turbine blade. In this paper, heat transfer and flow behavior in the channel impingement cooling structure are investigated by large eddy simulation (LES). The results imply that impingement created by curvature-induced centrifugal instabilities in the turning region of the cooling channel is dominated by a streamwise vortex system containing a counter-rotating Dean vortex, which presents high heat transfer streaks along the streamwise direction on the target wall. The intensely unsteady nature of the cooling jet induced by a lack of equilibrium between the pressure gradient and the centrifugal force is precisely captured herein by LES. An attaching-wall jet formed on the outer wall downstream of the cooling channel has highly three-dimensional characteristics not observed by Reynolds-averaged Navier–Stokes equations (RANS). Heat transfer augmentation on the target wall of the cooling channel is mainly due to the intensifying streamwise vortex system developing in the turning region as driven by the centrifugal force. This research work will provide a reference for the optimization and application of multichannel wall jet cooling for gas turbine blades.

References

1.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
11
), p.
113001
.10.1115/1.4039644
2.
Han
,
J. C.
, and
Wright
,
L. M.
,
2007
, “
Enhanced Internal Cooling of Turbine Blades and Vanes
,”
The Gas Turbine Handbook, U.S
,
DOE, National Energy Technology Laboratory
,
Morgantown, WV
, pp.
321
352
.
3.
Amano
,
R. S.
,
Nourin
,
F. N.
,
Salem
,
A. R.
, and
DiPasquale
,
N.
,
2019
, “
Investigation of Experimental Jet Array for Impinging Cooling of Blades
,” AIAA Paper No. 2019-4240.10.2514/6.2019-4240
4.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement- A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.10.1615/HeatTransRes.v42.i2.30
5.
Hwang
,
J. J.
, and
Cheng
,
C. S.
,
2001
, “
Impingement Cooling in Triangular Ducts Using an Array of Side-Entry Wall Jets
,”
Int. J. Heat Mass Transfer
,
44
(
5
), pp.
1053
1063
.10.1016/S0017-9310(00)00141-1
6.
Wang
,
X. J.
,
Liu
,
R.
,
Bai
,
X. W.
, and
Yao
,
J. L.
,
2012
, “
Numerical Study on Flow and Heat Transfer Characteristics of Jet Impingement
,” ASME Paper No. GT2011-45287.10.1115/GT2011-45287
7.
Chi
,
Z. R.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure
,”
Int. J. Heat Mass Transfer
,
64
, pp.
567
580
.10.1016/j.ijheatmasstransfer.2013.04.052
8.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2007
, “
Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
367
380
.10.1016/j.ijheatmasstransfer.2006.06.007
9.
Xing
,
Y. F.
, and
Weigand
,
B.
,
2010
, “
Experimental Investigation of Impingement Heat Transfer on a Flat and Dimpled Plate With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3874
3886
.10.1016/j.ijheatmasstransfer.2010.05.006
10.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2018
, “
Detailed Heat Transfer Measurements of Jet Impingement on Dimpled Target Surface Under Rotation
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031006
.10.1115/1.4039054
11.
Jing
,
Q.
,
Zhang
,
D.
, and
Xie
,
Y. H.
,
2018
, “
Numerical Investigations of Impingement Cooling Performance on Flat and Non-Flat Targets With Dimple/Protrusion and Triangular Rib
,”
Int. J. Heat Mass Transfer
,
126
, pp.
169
190
.10.1016/j.ijheatmasstransfer.2018.05.009
12.
Nourin
,
F. N.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Jet Impingement Cooling for Gas Turbine Blade With in-Line and Staggered Nozzle Arrays
,”
Int. J. Energy a Clean Environ.
,
21
(
2
), pp.
169
182
.10.1615/InterJEnerCleanEnv.2020033479
13.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M.
, and
Han
,
J.
,
2018
, “
Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
140
(
6
), p.
062201
.10.1115/1.4038691
14.
Wang
,
N.
,
Zhang
,
M.
,
Alsaleem
,
S.
,
Wright
,
L. M.
, and
Han
,
J.
,
2019
, “
Turbine Blade Leading Edge Impingement Cooling From Normal or Tangential Jets With Crossflow Effect
,”
Front. Heat Mass Transfer
,
13
(
1
), pp.
1
13
.10.5098/hmt.13.9
15.
Fan
,
X. J.
,
Li
,
L.
,
Zou
,
J. S.
,
Wang
,
J. F.
, and
Wu
,
F.
,
2018
, “
Local Heat Transfer of Vortex Cooling With Multiple Tangential Nozzles in a Gas Turbine Blade Leading Edge Cooling Passage
,”
Int. J. Heat Mass Transfer
,
126
, pp.
377
389
.10.1016/j.ijheatmasstransfer.2018.06.018
16.
Fan
,
X. J.
,
Li
,
L.
,
Zou
,
J. S.
, and
Zhou
,
Y. Y.
,
2019
, “
Cooling Methods for Gas Turbine Blade Leading Edge: Comparative Study on Impingement Cooling, Vortex Cooling and Double Vortex Cooling
,”
Int. Commun. Heat Mass Transfer
,
100
, pp.
133
145
.10.1016/j.icheatmasstransfer.2018.12.017
17.
Fan
,
X. J.
,
He
,
C. X.
,
Li
,
G.
,
Li
,
L.
, and
Du
,
C. H.
,
2020
, “
Experimental Study of Swirling Flow Characteristics in a Semi Cylinder Vortex Cooling Configuration
,”
Exp. Therm. Fluid Sci.
,
113
, p.
110036
.10.1016/j.expthermflusci.2019.110036
18.
Ligrani
,
P. M.
, and
Niver
,
R. D.
,
1988
, “
Flow Visualization of Dean Vortices in a Curved Channel With 40 to 1 Aspect Ratio
,”
Phys. Fluids
,
31
(
12
), pp.
3605
3617
.10.1063/1.866877
19.
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
,
Kelemenis
,
G.
,
Launder
,
B. E.
, and
Nikas
,
K.
,
1998
, “
LDA Study of the Flow Development Through an Orthogonally Rotating U-Bend of Strong Curvature and Rib-Roughened Walls
,”
ASME J. Turbomach.
,
120
(
2
), pp.
386
391
.10.1115/1.2841417
20.
Iacovides
,
H.
,
Jackson
,
D. C.
,
Kelemenis
,
G.
, and
Launder
,
B. E.
,
1999
, “
The Measurement of Local Wall Heat Transfer in Stationary U-Ducts of Strong Curvature, With Smooth and Rib-Roughened Walls
,”
ASME J. Turbomach.
,
122
(
2
), pp.
386
392
.10.1115/1.555459
21.
Laskowski
,
G. M.
, and
Durbin
,
P. A.
,
2007
, “
Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Infinite Serpentine Passage
,”
Phys. Fluids
,
19
(
1
), p.
015101
.10.1063/1.2404940
22.
Felten
,
F. N.
, and
Laskowski
,
G. M.
,
2007
, “
Large Eddy Simulations of Fully Developed Flow Through a Spanwise Rotating Infinite Serpentine Passage
,” ASME Paper No. GT2007-27423.10.1115/GT2007-27423
23.
Siw
,
S. C.
,
Chyu
,
M. K.
,
Karaivanov
,
V. G.
,
Slaughter
,
W. S.
, and
Alvin
,
M. A.
,
2009
, “
Influence of Internal Cooling Configuration on Metal Temperature Distributions of Future Coal-Fuel Based Turbine Airfoils
,” ASME Paper No. GT2009-59829.10.1115/GT2009-59829
24.
Stoakes
,
P.
, and
Ekkad
,
S.
,
2012
, “
Optimized Impingement Configurations for Double Wall Cooling Applications
,” ASME Paper No. GT2011-46143.10.1115/GT2011-46143
25.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries
,”
ASME J. Turbomach.
,
141
(
4
), p.
041008
.10.1115/1.4041751
26.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2020
, “
Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems
,”
ASME J. Turbomach.
,
142
(
11
), p.
111003
.10.1115/1.4047384
27.
Rao
,
Y.
,
Liu
,
Y. Y.
, and
Wan
,
C. Y.
,
2018
, “
Multiple-Jet Impingement Heat Transfer in Double-Wall Cooling Structures With Pin Fins and Effusion Holes
,”
Int. J. Therm. Sci.
,
133
, pp.
106
119
.10.1016/j.ijthermalsci.2018.07.021
28.
Rao
,
Y.
,
Li
,
Y.
,
Liu
,
Y. Y.
, and
Yang
,
L.
,
2023
, “
Experimental and Numerical Studies on Enhanced Effusion Cooling With Shallowly Dimpled Film Holes on Double-Wall Structure Surface
,”
Int. J. Heat Fluid Flow
,
101
, p.
109135
.10.1016/j.ijheatfluidflow.2023.109135
29.
Wei
,
H.
, and
Zu
,
Y. Q.
,
2021
, “
Heat Transfer and Flow Resistance Characteristics of Multi‐Row Jet Impingement Cooling in Double‐Wall Cooling Structure
,”
J. Aerosp. Power
,
36
(
8
), pp.
1621
1632
.10.13224/j.cnki.jasp.20200486
30.
Wei
,
H.
, and
Zu
,
Y. Q.
,
2023
, “
Experimental and Numerical Studies on the Enhanced Heat Transfer Performance and the Flow Resistance Characteristics of the Double-Wall Cooling Structure With Jet Impingement Holes and Pin Fins
,”
Int. J. Therm. Sci.
,
186
, p.
108109
.10.1016/j.ijthermalsci.2022.108109
31.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
32.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2015
, “
Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
.10.1016/j.ijthermalsci.2014.09.003
33.
Zhang
,
L. Z.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2017
, “
Airfoil for Turbomachine and Method of Cooling Same
,” Patent No. US 2017/0241270
A1
.
34.
Zhang
,
L. Z.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2017
, “
Airfoil for Turbomachine and Airfoil Cooling Method
,” Patent No. US 2017/0248022
A1
.
35.
Deng
,
Q. H.
,
Wang
,
H. H.
,
He
,
W.
, and
Feng
,
Z. P.
,
2022
, “
Cooling Characteristic of a Wall Jet for Suppressing Crossflow Effect Under Conjugate Heat Transfer Condition
,”
Aerospace
,
9
(
1
), p.
29
.10.3390/aerospace9010029
36.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
,
2019
, “
Effects of Jetting Orifice Geometry Parameters and Channel Reynolds Number on Bended Channel Cooling for a Novel Internal Cooling Structure
,” ASME Paper No. GT2019-90421.10.1115/GT2019-90421
37.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
,
2019
, “
Heat Transfer and Flow Mechanisms of Jetting Deflection in a Novel Bended Channel Cooling for Gas Turbine Blades
,”
5th International Workshop on Heat-Mass Transfer Advances for Energy Conservation and Pollution Control
, Novosibirsk, Russia, Aug. 13–16, Paper No. IWHT2019-53.
38.
Wang
,
H.
,
Deng
,
Q.
,
He
,
W.
, and
Feng
,
Z.
,
2023
, “
Cooling and Flow Characteristics of Multi-Channel Wall Jet Structure With Film Holes at Blade Leading Edge
,”
ASME J. Turbomach.
,
145
(
6
), p.
061009
.10.1115/1.4056513
39.
He
,
W.
,
Deng
,
Q. H.
,
Yang
,
G. Y.
, and
Feng
,
Z. P.
,
2021
, “
Effects of Turning Angle and Turning Internal Radius on Channel Impingement Cooling for a Novel Internal Cooling Structure
,”
ASME J. Turbomach.
,
143
(
9
), p.
091005
.10.1115/1.4050608
40.
Timko
,
L. P.
,
1984
, “
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,”
NASA
,
Washington, DC
, Report No. 168289.
41.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
42.
Zhao
,
Z. Y.
,
Wen
,
F. B.
,
Tang
,
X. L.
,
Song
,
J. X.
, and
Wang
,
Z. Q.
,
2021
, “
Large Eddy Simulation of Pulsed Film Cooling With Vortex Generators
,”
Int. J. Heat Mass Transfer
,
180
, p.
121806
.10.1016/j.ijheatmasstransfer.2021.121806
43.
Kanani
,
Y.
,
Acharya
,
S.
, and
Ames
,
F.
,
2020
, “
Large Eddy Simulation of Bypass Transition in Vane Passage With Freestream Turbulence
,”
ASME J. Turbomach.
,
142
(
6
), p.
061002
.10.1115/1.4046461
44.
Keylock
,
C. J.
,
Tokyay
,
T. E.
, and
Constantinescu
,
G.
,
2011
, “
A Method for Characterising the Sensitivity of Turbulent Flow Fields to the Structure of Inlet Turbulence
,”
J. Turbul.
,
12
(
45
), pp.
N45
30
.10.1080/14685248.2011.636047
45.
Piomelli
,
U.
, and
Chasnov
,
J. R.,
1996
, “
Large-Eddy Simulations: Theory and Applications
,”
Turbulence and Transition Modelling
, M.
Hallback
, D. S.
Henningson
, A. V.
Johansson
, eds.,
Kluwer
, Springer, Dordrecht, The Netherlands, pp.
269
331
.
46.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
47.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating u-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
.10.1115/1.2836706
48.
Leonard
,
A.
,
1980
, “
Vortex Methods for Flow Simulation
,”
J. Comput. Phys.
,
37
(
3
), pp.
289
335
.10.1016/0021-9991(80)90040-6
49.
Saha
,
K.
, and
Acharya
,
S.
,
2013
, “
Bend Geometries in Internal Cooling Channels for Improved Thermal Performance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031028
.10.1115/1.4007582
50.
Kobayashi
,
M.
,
Maekawa
,
H.
,
Takano
,
T.
, and
Kobayashi
,
M.
,
1994
, “
Experimental Study of Turbulent Heat Transfer in a Two-Dimensional Curved Channel: Time-Mean Temperature and Multiple Temperature/Velocity Correlations in the Entrance Section
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
37
(
3
), pp.
545
553
.10.1299/jsmeb.37.545
51.
Ligrani
,
P. M.
, and
Hedlund
,
C. R.
,
1998
, “
Transition to Turbulent Flow in Curved and Straight Channels With Heat Transfer at High Dean Numbers
,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1739
1748
.10.1016/S0017-9310(97)00264-0
52.
Ligrani
,
P. M
, &amp., and
Hedlund
,
C. R.
,
2004
, “
Experimental Surface Heat Transfer and Flow Structure in a Curved Channel With Laminar, Transitional, and Turbulent Flows
,”
ASME J. Turbomach.
,
126
(
3
), pp.
414
423
.10.1115/1.1738119
53.
Webb
,
R. L.
,
1981
, “
Performance Evaluation Criteria for Use of Enhanced Heat-Transfer Surfaces in Heat-Exchanger Design
,”
Int. J. Heat Mass Transfer
,
24
(
4
), pp.
715
726
.10.1016/0017-9310(81)90015-6
You do not currently have access to this content.