Abstract

Understanding thermal transport mechanisms in polymeric composites allows us to expand the boundaries of thermal conductivity in them, either increasing it for more efficient heat dissipation or decreasing it for better thermal insulation. But, these mechanisms are not fully understood. Systematic experimental investigations remain limited. Practical strategies to tune the interfacial thermal resistance (ITR) between fillers and polymers and the thermal conductivity of composites remain elusive. Here, we studied the thermal transport in representative polymer composites, using polyethylene (PE) or polyaniline (PANI) as matrices and graphite as fillers. PANI, with aromatic rings in its backbone, interacts with graphite through strong noncovalent ππ stacking interactions, whereas PE lacks such interactions. We can then quantify how ππ stacking interactions between graphite and polymers enhance thermal transport in composites. PE/graphite and PANI/graphite composites with the same 1.5% filler volume fractions show a ∼22.82% and ∼34.85% enhancement in thermal conductivity compared to pure polymers, respectively. Calculated ITRs in PE/graphite and PANI/graphite are 6×108m2KW1 and 1×108m2KW1, respectively, highlighting how ππ stacking interactions reduce ITR. Molecular dynamics (MD) simulations suggest that ππ stacking interactions between PANI chains and graphite surfaces enhance alignment of PANI's aromatic rings with graphite surfaces. This allows more carbon atoms from PANI chains to interact with graphite surfaces at a shorter distance compared to PE chains. Our work indicates that tuning the ππ stacking interactions between polymers and fillers is an effective approach to reduce the ITR and enhance the thermal conductivity of composites.

References

1.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
, New York.
2.
Qian
,
X.
,
Zhou
,
J.
, and
Chen
,
G.
,
2021
, “
Phonon-Engineered Extreme Thermal Conductivity Materials
,”
Nat. Mater.
,
20
(
9
), pp.
1188
1202
.10.1038/s41563-021-00918-3
3.
Moore
,
A. L.
, and
Shi
,
L.
,
2014
, “
Emerging Challenges and Materials for Thermal Management of Electronics
,”
Mater. Today
,
17
(
4
), pp.
163
174
.10.1016/j.mattod.2014.04.003
4.
Lienhard
,
J. H.
, IV
, and
Lienhard
,
J. H.
, V
,
2019
,
A Heat Transfer Textbook
, 5th ed.,
Courier Dover Publications
, Mineola, New York.
5.
Guo
,
Y.
,
Zhou
,
Y.
, and
Xu
,
Y.
,
2021
, “
Engineering Polymers With Metal-Like Thermal Conductivity—Present Status and Future Perspectives
,”
Polymer
,
233
, p.
124168
.10.1016/j.polymer.2021.124168
6.
Peplow
,
M.
,
2016
, “
The Plastics Revolution: How Chemists Are Pushing Polymers to New Limits
,”
Nature
,
536
(
7616
), pp.
266
268
.10.1038/536266a
7.
Liu
,
Y.
,
Zhou
,
Y.
, and
Xu
,
Y.
,
2022
, “
State-of-the-Art, Opportunities, and Challenges in Bottom-Up Synthesis of Polymers With High Thermal Conductivity
,”
Polym. Chem.
,
13
(
31
), pp.
4462
4483
.10.1039/D2PY00272H
8.
Wei
,
X.
,
Wang
,
Z.
,
Tian
,
Z.
, and
Luo
,
T.
,
2021
, “
Thermal Transport in Polymers: A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
7
), p.
072101
.10.1115/1.4050557
9.
Chen
,
H.
,
Ginzburg
,
V. V.
,
Yang
,
J.
,
Yang
,
Y.
,
Liu
,
W.
,
Huang
,
Y.
,
Du
,
L.
, and
Chen
,
B.
,
2016
, “
Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications
,”
Prog. Polym. Sci.
,
59
, pp.
41
85
.10.1016/j.progpolymsci.2016.03.001
10.
Xu
,
X.
,
Chen
,
J.
,
Zhou
,
J.
, and
Li
,
B.
,
2018
, “
Thermal Conductivity of Polymers and Their Nanocomposites
,”
Adv. Mater.
,
30
(
17
), p.
1705544
.10.1002/adma.201705544
11.
Xu
,
Y.
,
Wang
,
X.
, and
Hao
,
Q.
,
2021
, “
A Mini Review on Thermally Conductive Polymers and Polymer-Based Composites
,”
Compos. Commun.
,
24
, p.
100617
.10.1016/j.coco.2020.100617
12.
Balandin
,
A. A.
,
2011
, “
Thermal Properties of Graphene and Nanostructured Carbon Materials
,”
Nat. Mater.
,
10
(
8
), pp.
569
581
.10.1038/nmat3064
13.
Qin
,
Y.
,
Wang
,
B.
,
Hou
,
X.
,
Li
,
L.
,
Guan
,
C.
,
Pan
,
Z.
,
Li
,
M.
, et al.,
2022
, “
Constructing Tanghulu-Like Diamond@Silicon Carbide Nanowires for Enhanced Thermal Conductivity of Polymer Composite
,”
Compos. Commun.
,
29
, p.
101008
.10.1016/j.coco.2021.101008
14.
Ye
,
C.-M.
,
Shentu
,
B.-Q.
, and
Weng
,
Z.-X.
,
2006
, “
Thermal Conductivity of High Density Polyethylene Filled With Graphite
,”
J. Appl. Polym. Sci.
,
101
(
6
), pp.
3806
3810
.10.1002/app.24044
15.
Liao
,
Q.
,
Liu
,
Z.
,
Liu
,
W.
,
Deng
,
C.
, and
Yang
,
N.
,
2015
, “
Extremely High Thermal Conductivity of Aligned Carbon Nanotube-Polyethylene Composites
,”
Sci. Rep.
,
5
(
1
), p.
16543
.10.1038/srep16543
16.
Marconnet
,
A. M.
,
Yamamoto
,
N.
,
Panzer
,
M. A.
,
Wardle
,
B. L.
, and
Goodson
,
K. E.
,
2011
, “
Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites With High Packing Density
,”
ACS Nano
,
5
(
6
), pp.
4818
4825
.10.1021/nn200847u
17.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Prog. Polym. Sci.
,
36
(
7
), pp.
914
944
.10.1016/j.progpolymsci.2010.11.004
18.
Shtein
,
M.
,
Nadiv
,
R.
,
Buzaglo
,
M.
,
Kahil
,
K.
, and
Regev
,
O.
,
2015
, “
Thermally Conductive Graphene-Polymer Composites: Size, Percolation, and Synergy Effects
,”
Chem. Mater.
,
27
(
6
), pp.
2100
2106
.10.1021/cm504550e
19.
Sasidharan
,
S.
, and
Anand
,
A.
,
2020
, “
Epoxy-Based Hybrid Structural Composites With Nanofillers: A Review
,”
Ind. Eng. Chem. Res.
,
59
(
28
), pp.
12617
12631
.10.1021/acs.iecr.0c01711
20.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
21.
Burger
,
N.
,
Laachachi
,
A.
,
Ferriol
,
M.
,
Lutz
,
M.
,
Toniazzo
,
V.
, and
Ruch
,
D.
,
2016
, “
Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory
,”
Prog. Polym. Sci.
,
61
, pp.
1
28
.10.1016/j.progpolymsci.2016.05.001
22.
Frieden
,
E.
,
1975
, “
Non-Covalent Interactions: Key to Biological Flexibility and Specificity
,”
J. Chem. Educ.
,
52
(
12
), p.
754
.10.1021/ed052p754
23.
Hoeben
,
F. J.
,
Jonkheijm
,
P.
,
Meijer
,
E.
, and
Schenning
,
A. P.
,
2005
, “
About Supramolecular Assemblies of π-Conjugated Systems
,”
Chem. Rev.
,
105
(
4
), pp.
1491
1546
.10.1021/cr030070z
24.
Trucano
,
P.
, and
Chen
,
R.
,
1975
, “
Structure of Graphite by Neutron Diffraction
,”
Nature
,
258
(
5531
), pp.
136
137
.10.1038/258136a0
25.
Johnston
,
D. F.
,
1955
, “
The Structure of the π-Band of Graphite
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
227
, pp.
349
358
.10.1098/rspa.1955.0015
26.
Kim
,
E. S.
,
Lee
,
K. W.
, and
No
,
H. C.
,
2006
, “
Analysis of Geometrical Effects on Graphite Oxidation Through Measurement of Internal Surface Area
,”
J. Nucl. Mater.
,
348
(
1–2
), pp.
174
180
.10.1016/j.jnucmat.2005.09.018
27.
Nunes dos Santos
,
W.
,
Mummery
,
P.
, and
Wallwork
,
A.
,
2005
, “
Thermal Diffusivity of Polymers by the Laser Flash Technique
,”
Polym. Test.
,
24
(
5
), pp.
628
634
.10.1016/j.polymertesting.2005.03.007
28.
Yu
,
L.
,
Zhang
,
Y.
,
Tong
,
W.
,
Shang
,
J.
,
Lv
,
F.
,
Chu
,
P. K.
, and
Guo
,
W.
,
2012
, “
Hierarchical Composites of Conductivity Controllable Polyaniline Layers on the Exfoliated Graphite for Dielectric Application
,”
Compos. A: Appl. Sci. Manuf.
,
43
(
11
), pp.
2039
2045
.10.1016/j.compositesa.2012.06.001
29.
Jiang
,
J.
,
Li
,
L.
, and
Xu
,
F.
,
2007
, “
Polyaniline–LiNi Ferrite Core–Shell Composite: Preparation, Characterization and Properties
,”
Mater. Sci. Eng. A
,
456
(
1–2
), pp.
300
304
.10.1016/j.msea.2006.11.143
30.
Nobrega
,
M. M.
,
Ceppatelli
,
M.
,
Temperini
,
M. L. A.
, and
Bini
,
R.
,
2014
, “
Pressure-Induced Reactivity in the Emeraldine Salt and Base Forms of Polyaniline Probed by FTIR and Raman
,”
J. Phys. Chem. C
,
118
(
47
), pp.
27559
27566
.10.1021/jp509154j
31.
Shao
,
W.
,
Jamal
,
R.
,
Xu
,
F.
,
Ubul
,
A.
, and
Abdiryim
,
T.
,
2012
, “
The Effect of a Small Amount of Water on the Structure and Electrochemical Properties of Solid-State Synthesized Polyaniline
,”
Materials
,
5
(
10
), pp.
1811
1825
.10.3390/ma5101811
32.
Vallés
,
C.
,
Jiménez
,
P.
,
Muñoz
,
E.
,
Benito
,
A. M.
, and
Maser
,
W. K.
,
2011
, “
Simultaneous Reduction of Graphene Oxide and Polyaniline: Doping-Assisted Formation of a Solid-State Charge-Transfer Complex
,”
J. Phys. Chem. C
,
115
(
21
), pp.
10468
10474
.10.1021/jp201791h
33.
Konwer
,
S.
, and
Dolui
,
S. K.
,
2010
, “
Synthesis and Characterization of Polypyrrole/Graphite Composites and Study of Their Electrical and Electrochemical Properties
,”
Mater. Chem. Phys.
,
124
(
1
), pp.
738
743
.10.1016/j.matchemphys.2010.07.049
34.
Mooss
,
V. A.
, and
Athawale
,
A. A.
,
2016
, “
Polyaniline–Graphene Oxide Nanocomposites: Influence of Nonconducting Graphene Oxide on the Conductivity and Oxidation-Reduction Mechanism of Polyaniline
,”
J. Polym. Sci., Part A: Polym. Chem.
,
54
(
23
), pp.
3778
3786
.10.1002/pola.28277
35.
Yang
,
N.
,
Zhai
,
J.
,
Wan
,
M.
,
Wang
,
D.
, and
Jiang
,
L.
,
2010
, “
Layered Nanostructures of Polyaniline With Graphene Oxide as the Dopant and Template
,”
Synth. Met.
,
160
(
15–16
), pp.
1617
1622
.10.1016/j.synthmet.2010.05.029
36.
Forster
,
A. L.
,
Forster
,
A. M.
,
Chin
,
J. W.
,
Peng
,
J.-S.
,
Lin
,
C.-C.
,
Petit
,
S.
,
Kang
,
K.-L.
, et al.,
2015
, “
Long-Term Stability of UHMWPE Fibers
,”
Polym. Degrad. Stab.
,
114
, pp.
45
51
.10.1016/j.polymdegradstab.2015.01.028
37.
Manescu
,
V.
,
Antoniac
,
I.
,
Antoniac
,
A.
,
Paltanea
,
G.
,
Miculescu
,
M.
,
Bita
,
A.-I.
,
Laptoiu
,
S.
, et al.,
2022
, “
Failure Analysis of Ultra-High Molecular Weight Polyethylene Tibial Insert in Total Knee Arthroplasty
,”
Materials
,
15
(
20
), p.
7102
.10.3390/ma15207102
38.
Zhou
,
Y.
,
Ciarla
,
R.
,
Boonkird
,
A.
,
Nguyen
,
T.
,
Zhou
,
J.
,
Jiang
,
Z.
,
Zuo
,
X.
, et al.,
2023
, “
Defects Vibrations Engineering for Enhancing Interfacial Thermal Transport
,”
Sci. Adv.
, 11(4), p. eadp6516.10.1126/sciadv.adp6516
39.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
,
1996
, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics
,
14
(
1
), pp.
33
38
.10.1016/0263-7855(96)00018-5
40.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.10.1006/jcph.1995.1039
41.
Thompson
,
A. P.
,
Aktulga
,
H. M.
,
Berger
,
R.
,
Bolintineanu
,
D. S.
,
Brown
,
W. M.
,
Crozier
,
P. S.
,
in 't Veld
,
P. J.
, et al.,
2022
, “
LAMMPS—A Flexible Simulation Tool for Particle-Based Materials Modeling at the Atomic, Meso, and Continuum Scales
,”
Comput. Phys. Commun.
,
271
, p.
108171
.10.1016/j.cpc.2021.108171
42.
Sun
,
H.
,
1994
, “
Force Field for Computation of Conformational Energies, Structures, and Vibrational Frequencies of Aromatic Polyesters
,”
J. Comput. Chem.
,
15
(
7
), pp.
752
768
.10.1002/jcc.540150708
43.
Sun
,
H.
,
Mumby
,
S. J.
,
Maple
,
J. R.
, and
Hagler
,
A. T.
,
1994
, “
An Ab Initio CFF93 All-Atom Force Field for Polycarbonates
,”
J. Am. Chem. Soc.
,
116
(
7
), pp.
2978
2987
.10.1021/ja00086a030
44.
Sun
,
H.
,
1995
, “
Ab Initio Calculations and Force Field Development for Computer Simulation of Polysilanes
,”
Macromolecules
,
28
(
3
), pp.
701
712
.10.1021/ma00107a006
45.
Sun
,
H.
,
1993
, “
Ab Initio Characterizations of Molecular Structures, Conformation Energies, and Hydrogen-Bonding Properties for Polyurethane Hard Segments
,”
Macromolecules
,
26
(
22
), pp.
5924
5936
.10.1021/ma00074a014
46.
Sun
,
H.
,
Mumby
,
S. J.
,
Maple
,
J. R.
, and
Hagler
,
A. T.
,
1995
, “
Ab Initio Calculations on Small Molecule Analogs of Polycarbonates
,”
J. Phys. Chem.
,
99
(
16
), pp.
5873
5882
.10.1021/j100016a022
47.
Rahman
,
R.
,
Foster
,
J. T.
, and
Haque
,
A.
,
2013
, “
Molecular Dynamics Simulation and Characterization of Graphene–Cellulose Nanocomposites
,”
J. Phys. Chem. A
,
117
(
25
), pp.
5344
5353
.10.1021/jp402814t
48.
Yang
,
C.
,
Duan
,
X.
,
Zhou
,
J.
,
Liu
,
J.
, and
Li
,
X.
,
2022
, “
Thermal Transport Across Polyethylene Chains
,”
J. Therm. Sci.
,
31
(
4
), pp.
1061
1067
.10.1007/s11630-022-1640-7
49.
Negi
,
A.
,
Yan
,
L.
,
Yang
,
C.
,
Yu
,
Y.
,
Kim
,
D.
,
Mukherjee
,
S.
,
Comstock
,
A. H.
, et al.,
2024
, “
Anomalous Correlation Between Thermal Conductivity and Elastic Modulus in Two-Dimensional Hybrid Metal Halide Perovskites
,”
ACS Nano
,
18
(
22
), pp.
14218
14230
.10.1021/acsnano.3c12172
50.
Pal
,
S.
,
Balasubramanian
,
G.
, and
Puri
,
I. K.
,
2012
, “
Modifying Thermal Transport in Electrically Conducting Polymers: Effects of Stretching and Combining Polymer Chains
,”
J. Chem. Phys.
,
136
(
4
), p.
044901
.10.1063/1.3678848
51.
Fay
,
M. F.
, and
Dresel
,
T.
,
2017
, “
Applications of Model-Based Transparent Surface Films Analysis Using Coherence-Scanning Interferometry
,”
Opt. Eng.
,
56
(
11
), p.
111709
.10.1117/1.OE.56.11.111709
52.
Groot
,
P. D.
, and
Lega
,
X. C. D.
,
2007
, “
Angle-Resolved Three-Dimensional Analysis of Surface Films by Coherence Scanning Interferometry
,”
Opt. Lett.
,
32
(
12
), pp.
1638
1640
.10.1364/OL.32.001638
You do not currently have access to this content.