Abstract

Exergy represents the maximum useful work possible when a system at a specific state reaches equilibrium with the environmental dead state at temperature To. Correspondingly, the exergy difference between two states is the maximum work output when the system changes from one state to the other, assuming that during the processes, the system exchanges heat reversibly with the environment. If the process involves irreversibility, the Guoy–Stodola theorem states that the exergy destruction equals the entropy generated during the process multiplied by To. The exergy concept and the Gouy–Stodola theorem are often used to optimize processes or systems, even when they are not directly connected to the environment. In the past, questions have been raised on if To is the proper temperature to use in calculating the exergy destruction. Here, we start from the first and the second laws of thermodynamics to unambiguously show that the useful energy loss (UEL) of a system or process should equal to the entropy generation multiplied by an equivalent temperature associated with the entropy rejected out of the entire system. For many engineering systems and processes, this entropy rejection temperature can be easily calculated as the ratio of the changes of the enthalpy and entropy of the fluid stream carrying the entropy out, which we call the state-change temperature. The UEL is unambiguous and independent of the environmental dead state, and it should be used for system optimization rather than the exergy destruction. This work casts doubt on the usefulness of the exergy concept for engineering systems.

References

1.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
,
Wiley
,
Hoboken, NJ
.
2.
Moran
,
M. J.
,
1989
,
Availability Analysis: A Guide to Efficient Energy Use Corrected Edition
,
ASME Press
,
New York
.
3.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2014
, “
Exergy Analysis
,”
Fundamentals of Engineering Thermodynamics
,
Wiley
,
Hoboken, NJ
, pp.
369
405
.
4.
Çengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
, “
Exergy: A Measure of Work Potential
,”
Thermodynamics: An Engineering Approach
, 8th Ed,
McGraw-Hill
,
New York
, pp.
423
538
.
5.
Cropper
,
W. H.
,
1987
, “
Carnot's Function: Origins of the Thermodynamic Concept of Temperature
,”
Am. J. Phys.
,
55
(
2
), pp.
120
129
.10.1119/1.15255
6.
Kestin
,
J.
,
1980
, “
Availability: The Concept and Associated Terminology
,”
Energy
,
5
(
8–9
), pp.
679
692
.10.1016/0360-5442(80)90088-2
7.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M. J.
,
1995
,
Thermal Design and Optimization
,
Wiley
,
Hoboken, NJ
.
8.
Szargut
,
J.
,
1999
, “
Exergy in the Thermal Systems Analysis
,”
Thermodynamic Optimization of Complex Energy Systems
,
A.
Bejan
, and
E.
Mamut
, eds.,
Springer
,
Netherlands, Dordrecht
, pp.
137
150
.
9.
Kotas
,
T. J.
,
2012
,
The Exergy Method of Thermal Plant Analysis
,
Paragon Publishing
,
Trowbridge, UK
.
10.
Lucia
,
U.
,
2014
, “
The Gouy-Stodola Theorem in Bioenergetic Analysis of Living Systems (Irreversibility in Bioenergetics of Living Systems)
,”
Energies
,
7
(
9
), pp.
5717
5739
.10.3390/en7095717
11.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachhwaha
,
S. S.
,
2015
, “
Thermodynamic Modelling and Parametric Study of a Low Temperature Vapour Compression-Absorption System Based on Modified Gouy-Stodola Equation
,”
Energy
,
79
, pp.
407
418
.10.1016/j.energy.2014.11.027
12.
Ally
,
M. R.
,
Sharma
,
V.
, and
Abdelaziz
,
O.
,
2017
, “
Exergy Analysis of Electrically- and Thermally-Driven Engines to Drive Heat Pumps: An Exhaustive Comparative Study
,”
Int. J. Refrig.
,
76
, pp.
313
327
.10.1016/j.ijrefrig.2017.02.011
13.
James
,
C.
,
Kim
,
T. Y.
, and
Jane
,
R.
,
2020
, “
A Review of Exergy Based Optimization and Control
,”
Processes
,
8
(
3
), p.
364
.10.3390/pr8030364
14.
Bejan
,
A.
, and
Mamut
,
E.
,
1999
,
Thermodynamic Optimization of Complex Energy Systems
,
Springer Science & Business Media
,
Berlin, Germany
.
15.
Keenan
,
J. H.
,
1941
,
Thermodynamics
,
MIT Press
,
Cambridge, UK
.
16.
Szargut
,
J.
,
Valero
,
A.
,
Stanek
,
W.
, and
Valero
,
A.
,
2005
, “
Towards an International Reference Environment of Chemical Energy
,”
Proceedings of the 18th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS)
, Trondheim, Norway, June 20–22, pp. 409–417.https://www.exergoecology.com/exergoecology/szargut2005
17.
Gouy
,
1889
, “
Sur L'énergie Utilisable
,”
J. Phys. Theor. Appl.
,
8
(
1
), pp.
501
518
.10.1051/jphystap:018890080050101
18.
Stodola
,
A.
,
1903
, “
Abteilung III
,”
Die Aussichten Der Wärmekraftmaschinen, Die Dampfturbinen Und Die Aussichten Der Wärmekraftmaschinen: Versuche Und Studien
,
A.
Stodola
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
195
220
.
19.
Rejoinder
,
P.
,
2017
, “
Demystification of the Guy-Stodola Theorem of Thermodynamics for Closed Systems
,”
Int. J. Mech. Eng. Ed.
,
45
(
2
), pp.
142
153
10.1177/0306419016689501.
20.
Bejan
,
A.
,
2002
, “
Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture
,”
Int. J. Energy Res.
,
26
(
7
), pp.
0
43
.10.1002/er.804
21.
Sciubba
,
E.
, and
Wall
,
G.
,
2007
, “
A Brief Commented History of Exergy From the Beginnings to 2004
,”
Int. J. Thermodyn.
,
10
(
1
), pp.
1
26
.10.5541/ijot.184
22.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization
,”
CRC Press
,
Boca Raton, FL
.
23.
London
,
A. L.
,
1982
, “
Economics and the Second Law: An Engineering View and Methodology
,”
Int. J. Heat Mass Transfer
,
25
(
6
), pp.
743
751
.10.1016/0017-9310(82)90086-2
24.
London
,
A. L.
, and
Shah
,
R. K.
,
1983
, “
Costs of Irreversibilities in Heat Exchanger Design
,”
Heat Transfer Eng.
,
4
(
2
), pp.
59
73
.10.1080/01457638108939603
25.
Gallo
,
W. L. R.
, and
Milanez
,
L. F.
,
1990
, “
Choice of a Reference State for Exergetic Analysis
,”
Energy
,
15
(
2
), pp.
113
121
.10.1016/0360-5442(90)90048-7
26.
Lutz
,
A. E.
,
Larson
,
R. S.
, and
Keller
,
J. O.
,
2002
, “
Thermodynamic Comparison of Fuel Cells to the Carnot Cycle
,”
Int. J. Hydrogen Energy
,
27
(
10
), pp.
1103
1111
.10.1016/S0360-3199(02)00016-2
27.
Lampinen
,
M. J.
, and
Heikkinen
,
M. A.
,
1995
, “
Exergy Analysis for Stationary Flow Systems With Several Heat Exchange Temperatures
,”
Int. J. Energy Res.
,
19
(
5
), pp.
407
418
.10.1002/er.4440190506
28.
Lampinen
,
M. J.
, and
Wikstén
,
R.
,
2006
, “
Theory of Effective Heat-Absorbing and Heat-Emitting Temperatures in Entropy and Exergy Analysis with Applications to Flow Systems and Combustion Processes
,”
J. Non-Equilib. Thermodyn.
,
31
(
3
), pp.
257
291
.10.1515/JNETDY.2006.012
29.
Woudstra
,
N.
,
Woudstra
,
T.
,
Pirone
,
A.
, and
Stelt
,
T. V. D.
,
2010
, “
Thermodynamic Evaluation of Combined Cycle Plants
,”
Energy Convers. Manage.
,
51
(
5
), pp.
1099
1110
.10.1016/j.enconman.2009.12.016
30.
Holmberg
,
H.
,
Ruohonen
,
P.
, and
Ahtila
,
P.
,
2009
, “
Determination of the Real Loss of power for a Condensing and a Backpressure Turbine by Means of Second Law Analysis
,”
Entropy
,
11
(
4
), pp.
702
712
.10.3390/e11040702
31.
Holmberg
,
H.
, and
Ahtila
,
P.
,
2014
, “
The Thermal Analysis of a Combined Heat and Power Plant Undergoing Clausius–Rankine Cycle Based on the Theory of Effective Heat-Absorbing and Heat-Emitting Temperatures
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
977
987
.10.1016/j.applthermaleng.2014.05.100
32.
Holmberg
,
H.
, and
Laukkanen
,
T.
,
2019
, “
Exergetic Performance Analysis of Heat Pumps: Two Alternative Approaches
,”
Int. J. Exergy
,
30
(
2
), pp.
182
199
.10.1504/IJEX.2019.102181
33.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachhwaha
,
S. S.
,
2015
, “
NLP Model Based Thermoeconomic Optimization of Vapor Compression–Absorption Cascaded Refrigeration System
,”
Energy Convers. Manage.
,
93
, pp.
49
62
.10.1016/j.enconman.2014.12.095
34.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachhwaha
,
S. S.
,
2015
, “
Energy, Exergy, Economic and Environmental (4E) Analyses Based Comparative Performance Study and Optimization of Vapor Compression-Absorption Integrated Refrigeration System
,”
Energy
,
91
, pp.
816
832
.10.1016/j.energy.2015.08.041
35.
Jain
,
V.
,
Rawat
,
R.
,
Sachdeva
,
G.
, and
Kumar
,
V.
,
2020
, “
Multi-Objective Optimization of Cascade Refrigeration System Using the Concept of Modified and Advanced Exergy, Risk Level and Thermal Inventory
,”
Int. J. Air-Cond. Refrig.
,
28
(
4
), p.
2050036
.10.1142/S2010132520500364
36.
Carnot
,
S.
,
1824
,
Reflections on the Motive Power of Fire, and on Machines Fitted to Develop That Power
,
Bachelier
,
Paris
, Vol.
108
, p.
1824
.
37.
Thomson
,
W.
,
1851
, “
On an Absolute Thermometric Scale Founded on Carnot's Theory of the Motive Power of Heat, and Calculated From Regnault's Observations
,”
Mathematical and Physical Papers
, Vol.
I
,
Cambridge University Press
,
Cambridge
.
38.
Girolami
,
G. S.
,
2020
, “
A Brief History of Thermodynamics, As Illustrated by Books and People
,”
J. Chem. Eng. Data
,
65
(
2
), pp.
298
311
.10.1021/acs.jced.9b00515
39.
Helmholtz
,
H.
,
1847
,
Über Die Erhaltung Der Kraft
,
Druck und Verlag von G. Reimer
,
Berlin, Germany
.
40.
Haywood
,
R. W.
,
1974
, “
A Critical Review of the Theorems of Thermodynamic Availability, With Concise Formulations
,”
J. Mech. Eng. Sci.
,
16
(
3
), pp.
160
173
.10.1243/JMES_JOUR_1974_016_030_02
41.
Marquet
,
P.
,
1991
, “
On the Concept of Exergy and Available Enthalpy: Application to Atmospheric Energetics
,”
Q. J. R. Meteorol. Soc.
,
117
(
499
), pp.
449
475
.10.1002/qj.49711749903
42.
Bejan
,
A.
,
1996
, “
Short Communication Notes on the History of the Method of Entropy Generation Minimization (Finite Time Thermodynamics)
,”
J. Non-Equilib. Thermodyn.
,
21
(
3
), pp.
239
242
.10.1515/jnet.1996.21.3.239
43.
Clausius
,
R.
,
1879
, “
The Mechanical Theory of Heat
,”
MacMillan
,
London, UK
.
44.
Tait
,
P. G.
,
1879
, “
LIV. On the Dissipation of Energy
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
7
(
44
), pp.
344
348
.10.1080/14786447908639617
45.
Maxwell
,
J. C.
,
2001
,
Theory of Heat
,
Dover
,
New York
.
46.
Gibbs
,
J. W.
,
1873
, “
A Method of Geometrical Representation of the Thermodynamic Properties of Substances by Means of Surfaces
,”
Trans. Connecticut Acad. Arts Sci.
,
2
, pp.
382
404
.https://www3.nd.edu/~powers/ame.20231/gibbs1873b.pdf
47.
Keenan
,
J. H.
,
1932
, “
A Steam Chart for Second Law Analysis
,”
Mech. Eng.
,
54
, p.
11
.
48.
Keenan
,
J. H.
,
1951
, “
Availability and Irreversibility in Thermodynamics
,”
Br. J. Appl. Phys.
,
2
(
7
), pp.
183
192
.10.1088/0508-3443/2/7/302
49.
Rant
,
Z.
,
1956
, “
Exergie, Ein Neues Wortfur'technishe Arbeitsfahigkeit'
,”
Forsch.-Ing.-Wes.
,
22
, pp.
36
37
.
50.
Sciubba
,
E.
,
2017
, “
Professor Doctor Jan Szargut—Obituary
,”
Energies
,
10
(
12
), p.
2032
.10.3390/en10122032
51.
Jiang
,
Z.
,
Chen
,
Z.
,
Huff
,
J.
,
Shenvi
,
A. A.
,
Tawarmalani
,
M.
, and
Agrawal
,
R.
,
2019
, “
Global Minimization of Total Exergy Loss of Multicomponent Distillation Configurations
,”
AIChE J.
,
65
(
11
), p.
e16737
.10.1002/aic.16737
52.
Sciacovelli
,
A.
,
Verda
,
V.
, and
Sciubba
,
E.
,
2015
, “
Entropy Generation Analysis as a Design Tool—A Review
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
1167
1181
.10.1016/j.rser.2014.11.104
53.
Hesselgreaves
,
J. E.
,
2000
, “
Rationalisation of Second Law Analysis of Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4189
4204
.10.1016/S0017-9310(99)00364-6
54.
Bejan
,
A.
,
1977
, “
The Concept of Irreversibility in Heat Exchanger Design: Counterflow Heat Exchangers for Gas-to-Gas Applications
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
99
(
3
), pp.
374
380
.10.1115/1.3450705
55.
Liebhafsky
,
H. A.
,
1959
, “
The Fuel Cell and the Carnot Cycle
,”
J. Electrochem. Soc.
,
106
(
12
), p.
1068
.10.1149/1.2427213
56.
Appleby
,
A. J.
, and
Foulkes
,
F. R.
,
1993
,
Fuel Cell Handbook, Van Norstand Reinhold
,
Krieger Publishing Company
,
Melborne, FL, New York
, p.
1989
.
57.
Woudstra
,
N.
,
van der Stelt
,
T. P.
, and
Hemmes
,
K.
,
2006
, “
The Thermodynamic Evaluation and Optimization of Fuel Cell Systems
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(
2
), pp.
155
164
.10.1115/1.2174064
58.
Li
,
X.
,
2007
, “
Thermodynamic Performance of Fuel Cells and Comparison With Heat Engines
,”
Advances in Fuel Cells
,
T. S.
Zhao
,
K. D.
Kreuer
, and
T.
Van Nguyen
, eds.,
Elsevier Science
,
Amsterdam, The Netherlands
, pp.
1
46
.
59.
Ostwald
,
W.
,
1896
,
Elektrochemie, ihre Geschichte und Lehre, Veit
,
Leipzig, Germany
.
60.
Bejan
,
A.
,
1987
, “
The Thermodynamic Design of Heat and Mass Transfer Processes and Devices
,”
Int. J. Heat Fluid Flow
,
8
(
4
), pp.
258
276
.10.1016/0142-727X(87)90062-2
61.
Witte
,
L. C.
, and
Shamsundar
,
N.
,
1983
, “
A Thermodynamic Efficiency Concept for Heat Exchange Devices
,”
ASME J. Eng. Power
,
105
(
1
), pp.
199
203
.10.1115/1.3227388
62.
Ratts
,
E. B.
, and
Raut
,
A. G.
,
2004
, “
Entropy Generation Minimization of Fully Developed Internal Flow With Constant Heat Flux
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
126
(
4
), pp.
656
659
.10.1115/1.1777585
63.
Chang
,
Y.-J.
, and
Wang
,
C.-C.
,
1997
, “
A Generalized Heat Transfer Correlation for Iouver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
533
544
.10.1016/0017-9310(96)00116-0
64.
Chang
,
Y.-J.
,
Chang
,
W.-J.
,
Li
,
M.-C.
, and
Wang
,
C.-C.
,
2006
, “
An Amendment of the Generalized Friction Correlation for Louver Fin Geometry
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4250
4253
.10.1016/j.ijheatmasstransfer.2006.05.011
65.
Lienhard
,
J. H.
,
Mistry
,
K. H.
,
Sharqawy
,
M. H.
, and
Thiel
,
G. P.
,
2017
, “
Chapter 4 - Thermodynamics, Exergy, and Energy Efficiency in Desalination Systems
,”
Desalination Sustainability
,
H. A.
Arafat
, ed.,
Elsevier
, pp.
127
206
.
You do not currently have access to this content.