Abstract

This paper outlines an experimental investigation into fundamental nucleate boiling phenomena involving finned surfaces within a narrow channel. The study delves into the effects of both channel width (2.0 mm and 0.5 mm) and the orientation of the base surface (whether horizontal or vertical). Experimental trials were conducted using a saturated pool of FC-72. Comparative analysis is presented between the experimental data obtained in the confined narrow channel and the unconfined scenario of extended surfaces. Notably, the reduction in channel width exhibits negligible influence on heat transfer to the liquid when the base surface is vertically oriented. However, in the case of a horizontally oriented base surface, a substantial reduction in heat transfer behavior is observed. Beyond a critical point, vapor stagnation within the gap is identified, marking a noteworthy phenomenon after reaching the maximum heat flux. This paper contributes valuable insights into the nuanced effects of channel confinement on boiling heat transfer, particularly in relation to the orientation of the boiling surface.

References

1.
Nakayama
,
W.
,
2014
, “
Heat in Computers: Applied Heat Transfer in Information Technology
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
136
(
1
), p.
013001
.10.1115/1.4025377
2.
Bar-Cohen
,
A.
,
1992
, “
State-of-the-Art and Trends in the Thermal Packaging of Electronic Equipment
,”
ASME J. Electron. Packag.
,
114
(
3
), pp.
257
270
.10.1115/1.2905450
3.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
4.
Sohel Murshed
,
S. M.
, and
Nieto De Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.10.1016/j.rser.2017.04.112
5.
Fan
,
S.
, and
Duan
,
F.
,
2020
, “
A Review of Two-Phase Submerged Boiling in Thermal Management of Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
150
, p.
119324
.10.1016/j.ijheatmasstransfer.2020.119324
6.
Mudawar
,
I.
, and
Anderson
,
T. M.
,
1993
, “
Optimization of Enhanced Surfaces for High Flux Chip Cooling by Pool Boiling
,”
ASME J. Electron. Packag.
,
115
(
1
), pp.
89
100
.10.1115/1.2909306
7.
Kiyomura
,
I. S.
,
Mogaji
,
T. S.
,
Manetti
,
L. L.
, and
Cardoso
,
E. M.
,
2017
, “
A Predictive Model for Confined and Unconfined Nucleate Boiling Heat Transfer Coefficient
,”
Appl. Therm. Eng.
,
127
, pp.
1274
1284
.10.1016/j.applthermaleng.2017.08.135
8.
Misale
,
M.
,
Guglielmini
,
G.
,
Frogheri
,
M.
, and
Bergles
,
A. E.
,
1999
, “
FC-72 Pool Boiling From Finned Surfaces Placed in a Narrow Channel: Preliminary Results
,”
Heat Mass Transfer
,
34
(
6
), pp.
449
452
.10.1007/s002310050281
9.
Passos
,
J. C.
,
Hirata
,
F. R.
,
Possamai
,
L. F. B.
,
Balsamo
,
M.
, and
Misale
,
M.
,
2004
, “
Confined Boiling of FC72 and FC87 on a Downward Facing Heating Copper Disk
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
313
319
.10.1016/j.ijheatfluidflow.2003.11.016
10.
Della Volpe
,
A.
,
Baudin
,
N.
,
Roux
,
S.
,
Yu
,
R.
,
Fiard
,
J.-M.
, and
Bellettre
,
J.
,
2024
, “
Pool Boiling on Vertical and Horizontal Heated Plates With a Dielectric Fluid: Influence of Vertical Canal Width
,”
Appl. Therm. Eng.
,
242
, p.
122498
.10.1016/j.applthermaleng.2024.122498
11.
Sajjad
,
U.
,
Sadeghianjahromi
,
A.
,
Ali
,
H. M.
, and
Wang
,
C.-C.
,
2021
, “
Enhanced Pool Boiling of Dielectric and Highly Wetting Liquids—A Review on Surface Engineering
,”
Appl. Therm. Eng.
,
195
, p.
117074
.10.1016/j.applthermaleng.2021.117074
12.
Kaniowski
,
R.
, and
Pastuszko
,
R.
,
2021
, “
Pool Boiling of Water on Surfaces With Open Microchannels
,”
Energies
,
14
(
11
), p.
3062
.10.3390/en14113062
13.
Gouda
,
R. K.
,
Ranjan
,
A.
,
Pathak
,
M.
, and
Kaleem Khan
,
M.
,
2024
, “
Combined Effect of Structured Surface and Biosurfactant in Pool Boiling Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
221
, p.
125102
.10.1016/j.ijheatmasstransfer.2023.125102
14.
Katto
,
Y.
, and
Yokoya
,
S.
,
1966
, “
Experimental Study of nucleate pool Boiling in Case of Making Interference-Plate Approach to the Heating Surface
,”
Trans. Jpn. Soc. Mech. Eng.
,
32
(
238
), pp.
948
958
.10.1299/kikai1938.32.948
15.
Yao
,
S.-C.
, and
Chang
,
Y.
,
1983
, “
Pool Boiling Heat Transfer in a Confined Space
,”
Int. J. Heat Mass Transfer
,
26
(
6
), pp.
841
848
.10.1016/S0017-9310(83)80108-2
16.
Hung
,
Y.-H.
, and
Yao
,
S.-C.
,
1985
, “
Pool Boiling Heat Transfer in Narrow Horizontal Annular Crevices
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
107
(
3
), pp.
656
662
.10.1115/1.3247474
17.
Misale
,
M.
, and
Bergles
,
A. E.
,
1997
, “
The Influence of Channel Width on Natural Convection and Boiling Heat Transfer From Simulated Microelectronic Components
,”
Exp. Therm. Fluid Sci.
,
14
(
2
), pp.
187
193
.10.1016/S0894-1777(96)00065-9
18.
Rops
,
C. M.
,
Lindken
,
R.
,
Velthuis
,
J. F. M.
, and
Westerweel
,
J.
,
2009
, “
Enhanced Heat Transfer in Confined Pool Boiling
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
751
760
.10.1016/j.ijheatfluidflow.2009.03.007
19.
Sarode
,
A.
,
Raj
,
R.
, and
Bhargav
,
A.
,
2020
, “
On the Role of Confinement Plate Wettability on Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
156
, p.
119723
.10.1016/j.ijheatmasstransfer.2020.119723
20.
Alsaati
,
A. A.
,
Warsinger
,
D. M.
,
Weibel
,
J. A.
, and
Marconnet
,
A. M.
,
2023
, “
A Mechanistic Model to Predict Saturated Pool Boiling Critical Heat Flux (CHF) in a Confined Gap
,”
Int. J. Multiphase Flow
,
167
, p.
104542
.10.1016/j.ijmultiphaseflow.2023.104542
21.
Ishibashi
,
E.
,
Liu
,
Z. H.
,
Chirifu
,
T.
, and
Murakami
,
N.
,
1994
, “
Pool-Boiling Heat-Transfer Characteristics of the Surface-Worked Heat-Transfer Tubes in Narrow Spaces Under Reduced Pressure Conditions
,”
Heat Transfer - Jpn. Res. (U.S.)
,
22
(
7
), pp.
703
715
.https://typeset.io/papers/pool-boiling-heat-transfer-characteristics-of-the-surface-1hyd8ebrt2
22.
Nowell
,
R. M.
,
Bhavnani
,
S. H.
, and
Jaeger
,
R. C.
,
1995
, “
Effect of Channel Width on Pool Boiling From a Microconfigured Heat Sink
,”
IEEE Trans. Compon., Packag., Manuf. Technol. A
,
18
(
3
), pp.
534
539
.10.1109/95.465149
23.
Misale
,
M.
, and
Bocanegra
,
J. A.
,
2023
, “
Experiments and Qualitative Analysis by Artificial Neural Network Approach on Pool Boiling of FC-72 on Finned Surfaces Confined by an Unheated Horizontal Wall
,”
Int. J. Therm. Sci.
,
187
, p.
108105
.10.1016/j.ijthermalsci.2022.108105
24.
3M, C.
,
1987
, “
FC-72. Fluorinert Electronic Liquids Product Manual
,”
3M Industrial Chemical Products Division
,
St. Paul, MN
.
You do not currently have access to this content.