Abstract

In manufacturing operations such as clamping and drilling of elastic structures, tool–workpiece normality must be maintained, and shear forces minimized to avoid tool or workpiece damage. The challenge is that the combined stiffness of a robot and workpiece, needed to control the robot–workpiece elastic interactions, are often difficult to model and can vary due to geometry changes of the workpiece caused by large deformations and associated pose variations of the robot. The main contribution of this article is an algorithm (i) to learn the robot–workpiece stiffness relationship using a model-free data-based approach and (ii) to use it for applying desired forces and torques on the elastic structure. Moreover, comparative experiments with and without the data-based stiffness estimation show that clamping operating speed is increased by four times when using the stiffness estimation method while interaction forces and torques are kept within acceptable bounds.

References

1.
Gao
,
Y.
,
Wu
,
D.
,
Nan
,
C.
,
Ma
,
X.
, and
Chen
,
K.
,
2014
, “
Optimization Design for Normal Direction Measurement in Robotic Drilling
,”
ASME International Mechanical Engineering Congress and Exposition (46445)
,
Montreal, Quebec, Canada
,
Nov. 14–20
, p.
V02BT02A033
.
2.
Diaz Posada
,
J. R.
,
Schneider
,
U.
,
Pidan
,
S.
,
Geravand
,
M.
,
Stelzer
,
P.
, and
Verl
,
A.
,
2016
, “
High Accurate Robotic Drilling With External Sensor and Compliance Model-Based Compensation
,”
2016
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
3901
3907
. 10.1109/ICRA.2016.7487579
3.
Verl
,
A.
,
Valente
,
A.
,
Melkote
,
S.
,
Brecher
,
C.
,
Ozturk
,
E.
, and
Tunc
,
L. T.
,
2019
, “
Robots in Machining
,”
CIRP Ann.
,
68
(
2
), pp.
799
822
.
4.
Costa
,
M.
,
Gouveia
,
R.
,
Silva
,
F.
, and
Campilho
,
R.
,
2018
, “
How to Solve Quality Problems by Advanced Fully-Automated Manufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3041
3063
.
5.
Pereira
,
B.
,
Griffiths
,
C. A.
,
Birch
,
B.
, and
Rees
,
A.
,
2022
, “
Optimization of an Autonomous Robotic Drilling System for the Machining of Aluminum Aerospace Alloys
,”
Int. J. Adv. Manuf. Technol.
,
119
(
3–4
), pp.
2429
2444
.
6.
van Duin
,
S.
, and
Kihlman
,
H.
,
2005
, “
Robotic Normalizing Force Feedback
,”
Aerospace Technology Conference and Exposition
,
Grapevine,TX
,
Oct. 3–6
,
SAE International
, pp.
1
9
..
7.
Guo
,
Y.
,
Dong
,
H.
, and
Ke
,
Y.
,
2015
, “
Stiffness-Oriented Posture Optimization in Robotic Machining Applications
,”
Robot. Comput. Integr. Manuf.
,
35
, pp.
69
76
.
8.
Bu
,
Y.
,
Liao
,
W.
,
Tian
,
W.
,
Zhang
,
J.
, and
Zhang
,
L.
,
2017
, “
Stiffness Analysis and Optimization in Robotic Drilling Application
,”
Precis. Eng.
,
49
, pp.
388
400
.
9.
Cvitanic
,
T.
,
Nguyen
,
V.
, and
Melkote
,
S. N.
,
2020
, “
Pose Optimization in Robotic Machining Using Static and Dynamic Stiffness Models
,”
Robot. Comput. Integr. Manuf.
,
66
, p.
101992
.
10.
Olsson
,
T.
,
Haage
,
M.
,
Kihlman
,
H.
,
Johansson
,
R.
,
Nilsson
,
K.
,
Robertsson
,
A.
,
Björkman
,
M.
,
Isaksson
,
R.
,
Ossbahr
,
G.
, and
Brogårdh
,
T.
,
2010
, “
Cost-Efficient Drilling Using Industrial Robots With High-Bandwidth Force Feedback
,”
Robot. Comput. Integr. Manuf.
,
26
(
1
), pp.
24
38
.
11.
Frommknecht
,
A.
,
Kuehnle
,
J.
,
Effenberger
,
I.
, and
Pidan
,
S.
,
2017
, “
Multi-Sensor Measurement System for Robotic Drilling
,”
Robot. Comput. Integr. Manuf.
,
47
, pp.
4
10
.
12.
Zhang
,
L.
,
Dhupia
,
J.
, and
Wu
,
M.
,
2018
, “
Analysis and Comparison of Control Strategies for Normal Adjustment of a Robotic Drilling End-Effector
,”
J. Vibroeng.
,
20
(
7
), pp.
2651
2667
.
13.
Hou
,
Z.-S.
, and
Wang
,
Z.
,
2013
, “
From Model-Based Control to Data-Driven Control: Survey, Classification and Perspective
,”
Inf. Sci.
,
235
, pp.
3
35
.
14.
Ji
,
W.
, and
Wang
,
L.
,
2019
, “
Industrial Robotic Machining: A Review
,”
Int. J. Adv. Manuf. Technol.
,
103
(
1–4
), pp.
1239
1255
.
15.
Wang
,
Z.
,
Zhang
,
R.
, and
Keogh
,
P.
,
2020
, “
Real-Time Laser Tracker Compensation of Robotic Drilling and Machining
,”
J. Manuf. Mater. Process.
,
4
(
3
), p.
79
.
16.
Schneider
,
U.
,
Drust
,
M.
,
Ansaloni
,
M.
,
Lehmann
,
C.
,
Pellicciari
,
M.
,
Leali
,
F.
,
Gunnink
,
J. W.
, and
Verl
,
A.
,
2016
, “
Improving Robotic Machining Accuracy Through Experimental Error Investigation and Modular Compensation
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1–4
), pp.
3
15
.
17.
Enebuse
,
I.
,
Foo
,
M.
,
Ibrahim
,
B. S. K. K.
,
Ahmed
,
H.
,
Supmak
,
F.
, and
Eyobu
,
O. S.
,
2021
, “
A Comparative Review of Hand-Eye Calibration Techniques for Vision Guided Robots
,”
IEEE Access
,
9
, p.
113143
.
18.
Hsiao
,
J.-C.
,
Shivam
,
K.
,
Lu
,
I.-F.
, and
Kam
,
T.-Y.
,
2020
, “
Positioning Accuracy Improvement of Industrial Robots Considering Configuration and Payload Effects Via a Hybrid Calibration Approach
,”
IEEE Access
,
8
, p.
228992
.
19.
Enebuse
,
I.
,
Ibrahim
,
B. K. S. M. K.
,
Foo
,
M.
,
Matharu
,
R. S.
, and
Ahmed
,
H.
,
2022
, “
Accuracy Evaluation of Hand-Eye Calibration Techniques for Vision-Guided Robots
,”
PLoS One
,
17
(
10
), pp.
1
26
.
20.
McCann
,
L.
,
Lee
,
C.-N.
,
Gombo
,
Y.
,
Garbini
,
J.
, and
Devasia
,
S.
,
2019
, “
Data-Based Learning for Control of Elastic Interactions Between Robot and Workpiece
,”
Dynamic Systems and Control Conference
,
Park City, UT
,
Oct. 8–11
, Vol. 59148,
ASME
,
p. V001T10A005
.
21.
Chen
,
S.-F.
, and
Kao
,
I.
,
2000
, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Robot. Res.
,
19
(
9
), pp.
835
847
.
22.
Kalimullah
,
N. M.
,
Shukla
,
K.
,
Shelke
,
A.
, and
Habib
,
A.
,
2023
, “
Stiffness Tensor Estimation of Anisotropic Crystal Using Point Contact Method and Unscented Kalman Filter
,”
Ultrasonics
,
131
, p.
106939
.
23.
Le Cleac’h
,
S.
,
Schwager
,
M.
, and
Manchester
,
Z.
,
2021
, “
Lucidgames: Online Unscented Inverse Dynamic Games for Adaptive Trajectory Prediction and Planning
,”
IEEE Robot. Autom. Lett.
,
6
(
3
), pp.
5485
5492
.
You do not currently have access to this content.