Abstract

Tactile skins made from textiles enhance the robot–human interaction by localizing contact points and measuring contact forces. This paper presents a solution for rapidly fabricating, calibrating, and deploying these skins on industrial robot arms. The novel automated skin calibration procedure maps skin locations to robot geometry and calibrates contact force. Through experiments on a FANUC LR Mate 200id/7L industrial robot, we demonstrate that tactile skins made from textiles can be effectively used for human–robot interaction in industrial environments, and can provide unique opportunities in robot control and learning, making them a promising technology for enhancing robot perception and interaction.

References

1.
Cao
,
M. Y.
, and
Laws
,
S.
,
2021
, “
Six-Axis Force/torque Sensors for Robotics Applications: A Review
,”
IEEE Sens. J.
,
21
(
24
), pp.
27238
27251
.
2.
Wahrburg
,
A.
,
Bös
,
J.
,
Listmann
,
K. D.
,
Dai
,
F.
,
Matthias
,
B.
, and
Ding
,
H.
,
2017
, “
Motor-Current-Based Estimation of Cartesian Contact Forces and Torques for Robotic Manipulators and Its Application to Force Control
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
2
), pp.
879
886
.
3.
Kloss
,
A.
,
Bauza
,
M.
,
Wu
,
J.
,
Tenenbaum
,
J. B.
,
Rodriguez
,
A.
, and
Bohg
,
J.
,
2020
, “
Accurate Vision-Based Manipulation Through Contact Reasoning
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
6738
6744
.
4.
Tsuji
,
S.
, and
Kohama
,
T.
,
2020
, “
A General-Purpose Safety Light Curtain Using ToF Sensor for End Effector on Human Collaborative Robot
,”
IEEJ Trans. Electr. Electron. Eng.
,
15
(
12
), pp.
1868
1874
.
5.
Dahiya
,
R. S.
,
Mittendorfer
,
P.
,
Valle
,
M.
,
Cheng
,
G.
, and
Lumelsky
,
V. J.
,
2013
, “
Directions Toward Effective Utilization of Tactile Skin: A Review
,”
IEEE Sens. J.
,
13
(
11
), pp.
4121
4138
.
6.
Cirillo
,
A.
,
Ficuciello
,
F.
,
Natale
,
C.
,
Pirozzi
,
S.
, and
Villani
,
L.
,
2015
, “
A Conformable Force/Tactile Skin for Physical Human–Robot Interaction
,”
IEEE Rob. Autom. Lett.
,
1
(
1
), pp.
41
48
.
7.
Touch Solution
,
2023
, “
Touch Solution
,” https://www.touche.solutions, Accessed April 10, 2023.
8.
Si
,
Z.
,
Yu
,
T. C.
,
Morozov
,
K.
,
McCann
,
J.
, and
Yuan
,
W.
,
2023
, “
RobotSweater: Scalable, Generalizable, and Customizable Machine-Knitted Tactile Skins for Robots
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, pp.
10352
10358
.
9.
Perron
,
L.
, and
Furnon
,
V.
,
2023
, “
OR-Tools
,” https://developers.google.com/optimization/.
10.
Mohammadi
,
A.
,
Xu
,
Y.
,
Tan
,
Y.
,
Choong
,
P.
, and
Oetomo
,
D.
,
2019
, “
Magnetic-Based Soft Tactile Sensors With Deformable Continuous Force Transfer Medium for Resolving Contact Locations in Robotic Grasping and Manipulation
,”
Sensors
,
19
(
22
), p. 4925.
11.
Shek
,
A.
,
Chen
,
R.
, and
Liu
,
C.
,
2023
, “
Learning From Physical Human Feedback: An Object-Centric One-Shot Adaptation Method
,”
2023 IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, pp.
9910
9916
.
12.
Lin
,
H.-Chung.
,
Liu
,
C.
,
Fan
,
Y.
, and
Tomizuka
,
M.
,
2017
, “
Real-Time Collision Avoidance Algorithm on Industrial Manipulators
,”
2017 IEEE Conference on Control Technology and Applications (CCTA)
,
Maui, HI
,
Aug. 27–30
, pp.
1294
1299
.
13.
Liu
,
R.
,
Chen
,
R.
,
Sun
,
Y.
,
Zhao
,
Y.
, and
Liu
,
C.
,
2022
, “
Jerk-Bounded Position Controller With RealTime Task Modification for Interactive Industrial Robots
,” 2022
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Sapporo, Japan
,
July 11–15
,
IEEE
, pp.
1771
1778
.
14.
Pugach
,
G.
,
Melnyk
,
A.
,
Tolochko
,
O.
,
Pitti
,
A.
, and
Gaussier
,
P.
,
2016
, “
Touch-Based Admittance Control of a Robotic Arm Using Neural Learning of an Artificial Skin
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
3374
3380
.
15.
Lahr
,
G. J. G.
,
Soares
,
J. V. R.
,
Garcia
,
H. B.
,
Siqueira
,
A. A. G.
, and
Caurin
,
G. A. P.
,
2016
, “
Understanding the Implementation of Impedance Control in Industrial Robots
,”
2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR)
,
Recife, Brazil
,
Oct. 8–12
,
IEEE
, pp.
269
274
.
You do not currently have access to this content.