Abstract

This paper studies the combined maneuver of flying and sailing for a robotic system which is referred to as a flying+sailing drone. Due to the emergence of hybrid systems behavior in tasks which involve both the flying and sailing modes, a hybrid systems formulation of the robotic system is presented. Key characteristics of the system are (i) changes in the dimension of the state space as the system switches from flying to sailing and vice versa and (ii) the presence of autonomous switchings triggered only upon the landing of the drone on the water surface. For the scenario in which the drone’s initial state is given in the flying mode and a fixed terminal state is specified in the sailing mode, the associated optimal control problems are studied within the vertical plane passing through the given points, hence the dynamics of the drone in the flying mode are represented in a five-dimensional state space (associated with three degrees-of-freedom) and in a three-dimensional state space in the sailing mode (associated with two degrees-of-freedom). In particular, the optimal control problems for the minimization of time and the minimization of the control effort are formulated, the associated necessary optimality conditions are obtained from the hybrid minimum principle (HMP), and the associated numerical simulations are presented.

References

1.
Ackerman
,
E.
,
2022
, “
Darpa Reincarnates Soviet-Era Sea Monster: Concept Sea Skimmer to Fly Meters Above the Ocean
,”
IEEE Spect.
,
59
(
9
), pp.
6
13
.
2.
Qingqing
,
L.
,
Taipalmaa
,
J.
,
Queralta
,
J. P.
,
Gia
,
T. N.
,
Gabbouj
,
M.
,
Tenhunen
,
H.
,
Raitoharju
,
J.
, and
Westerlund
,
T.
,
2020
, “
Towards Active Vision With UAVS in Marine Search and Rescue: Analyzing Human Detection at Variable Altitudes
,”
2020 IEEE International Symposium on Safety, Security, and Rescue Robotics
,
Abu Dhabi, UAE
,
Nov. 4–6
, pp.
65
70
.
3.
Zwick
,
M.
,
Gerdts
,
M.
, and
Stütz
,
P.
,
2023
, “
Sensor-Model-Based Trajectory Optimization for UAVS to Enhance Detection Performance: An Optimal Control Approach and Experimental Results
,”
Sensors
,
23
(
2
), p.
664
.
4.
Ho
,
W.-C.
,
Shen
,
J.-H.
,
Liu
,
C.-P.
, and
Chen
,
Y.-W.
,
2022
, “
Research on Optimal Model of Maritime Search and Rescue Route for Rescue of Multiple Distress Targets
,”
J. Marine Sci. Eng.
,
10
(
4
), p.
460
.
5.
An
,
Y.
,
Yu
,
J.
, and
Zhang
,
J.
,
2021
, “
Autonomous Sailboat Design: A Review From the Performance Perspective
,”
Ocean Eng.
,
238
, p.
109753
.
6.
Shepherd
,
B.
,
Haydon
,
B.
, and
Vermillion
,
C.
,
2020
, “
Serious Sailing: Time-Optimal Control of Sailing Drones in Stochastic, Spatiotemporally Varying Wind Fields
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1–3
, pp.
5125
5130
.
7.
Sidoti
,
D.
,
Pattipati
,
K. R.
, and
Bar-Shalom
,
Y.
,
2023
, “
Minimum Time Sailing Boat Path Algorithm
,”
IEEE J. Ocean. Eng.
,
48
, pp.
307
322
.
8.
Shen
,
Z.
,
Ding
,
W.
,
Liu
,
Y.
, and
Yu
,
H.
,
2023
, “
Path Planning Optimization for Unmanned Sailboat in Complex Marine Environment
,”
Ocean Eng.
,
269
, p.
113475
.
9.
Hehn
,
M.
,
Ritz
,
R.
, and
D’Andrea
,
R.
,
2012
, “
Performance Benchmarking of Quadrotor Systems Using Time-Optimal Control
,”
Auton. Rob.
,
33
, pp.
69
88
.
10.
Romero
,
A.
,
Penicka
,
R.
, and
Scaramuzza
,
D.
,
2022
, “
Time-Optimal Online Replanning for Agile Quadrotor Flight
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
7730
7737
.
11.
Foehn
,
P.
,
Romero
,
A.
, and
Scaramuzza
,
D.
,
2021
, “
Time-Optimal Planning for Quadrotor Waypoint Flight
,”
Sci. Rob.
,
6
(
56
), p.
eabh1221
.
12.
Ryou
,
G.
,
Tal
,
E.
, and
Karaman
,
S.
,
2021
, “
Multi-fidelity Black-Box Optimization for Time-Optimal Quadrotor Maneuvers
,”
Int. J. Rob. Res.
,
40
(
12–14
), pp.
1352
1369
.
13.
Spedicato
,
S.
, and
Notarstefano
,
G.
,
2017
, “
Minimum-Time Trajectory Generation for Quadrotors in Constrained Environments
,”
IEEE Trans. Control Syst. Technol.
,
26
(
4
), pp.
1335
1344
.
14.
Penin
,
B.
,
Spica
,
R.
,
Giordano
,
P. R.
, and
Chaumette
,
F.
,
2017
, “
Vision-Based Minimum-Time Trajectory Generation for a Quadrotor UAV
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
,
IEEE
, pp.
6199
6206
.
15.
Riedinger
,
P.
,
lung
,
C.
, and
Kratz
,
F.
,
2003
, “
An Optimal Control Approach for Hybrid Systems
,”
Eur. J. Control
,
9
(
5
), pp.
449
458
.
16.
Garavello
,
M.
, and
Piccoli
,
B.
,
2005
, “
Hybrid Necessary Principle
,”
SIAM J. Control Optim.
,
43
(
5
), pp.
1867
1887
.
17.
Shaikh
,
M. S.
, and
Caines
,
P. E.
,
2007
, “
On the Hybrid Optimal Control Problem: Theory and Algorithms
,”
IEEE Trans. Automat. Contr.
,
52
(
9
), pp.
1587
1603
.
18.
Pakniyat
,
A.
, and
Caines
,
P. E.
,
2016
, “
On the Stochastic Minimum Principle for Hybrid Systems
,”
2016 IEEE 55th Conference on Decision and Control (CDC)
,
Las Vegas, NV
,
Dec. 12–14
,
IEEE
, pp.
1139
1144
.
19.
Pakniyat
,
A.
, and
Caines
,
P. E.
,
2017
, “
Hybrid Optimal Control of an Electric Vehicle With a Dual-Planetary Transmission
,”
Nonlinear Anal. Hybrid Syst.
,
25
, pp.
263
282
.
20.
Pakniyat
,
A.
, and
Caines
,
P. E.
,
2021
, “
On the Hybrid Minimum Principle: The Hamiltonian and Adjoint Boundary Conditions
,”
IEEE Trans. Automat. Contr.
,
66
(
3
), pp.
1246
1253
.
21.
Rahimi Mousavi
,
M. S.
,
Pakniyat
,
A.
,
Wang
,
T.
, and
Boulet
,
B.
,
2015
, “
Seamless Dual Brake Transmission for Electric Vehicles: Design, Control and Experiment
,”
Mech. Mach. Theory
,
94
, pp.
96
118
.
22.
Boulet
,
B.
,
Mousavi
,
M. S. R.
,
Alizadeh
,
H. V.
, and
Pakniyat
,
A.
,
2017
, “
Seamless Transmission Systems and Methods for Electric Vehicles
,” July 11, US Patent 9702438.
23.
Kim
,
N.
,
Cha
,
S.
, and
Peng
,
H.
,
2010
, “
Optimal Control of Hybrid Electric Vehicles Based on Pontryagin’s Minimum Principle
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1279
1287
.
24.
Xie
,
S.
,
Hu
,
X.
,
Xin
,
Z.
, and
Brighton
,
J.
,
2019
, “
Pontryagin’s Minimum Principle Based Model Predictive Control of Energy Management for a Plug-In Hybrid Electric Bus
,”
Appl. Energy
,
236
, pp.
893
905
.
25.
Pakniyat
,
A.
,
2016
, “
Optimal Control of Deterministic and Stochastic Hybrid Systems: Theory and Applications
”, Ph.D. thesis,
Department of Electrical & Computer Engineering, McGill University
,
Montreal, Canada
.
You do not currently have access to this content.