Abstract

Control co-design (CCD) techniques are effective design tools for systems with highly transient operation, such as vehicle power and thermal management systems, where electrification necessitates a shift away from steady-state cooling solutions to transient thermal management that can respond to dynamic heat generation. The primary control objective of such systems is guaranteeing robustness to uncertainty in exogenous disturbance signals. Set-based methods are well suited for solving such optimization problems due to their ability to guarantee satisfaction of safety constraints. While a principal challenge with set-based methods is their computational expense, recent work has provided new ways to exactly and efficiently conduct set-based optimization for mixed logical dynamical (MLD) systems. In this work, we show how these methods can be applied to the problem of robust CCD for a hybrid thermal management system subject to a time-varying disturbance set.

References

1.
Garcia-Sanz
,
M.
,
2019
, “
Control Co-Design: An Engineering Game Changer
,”
Adv. Control Appl.
,
1
(
1
), p.
e.18
.
2.
Herber
,
D. R.
, and
Allison
,
J. T.
,
2019
, “
Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems
,”
ASME J. Mech. Des.
,
141
(
1
), p.
011402
.
3.
Doty
,
J.
,
Yerkes
,
K.
,
Byrd
,
L.
,
Murthy
,
J.
,
Alleyne
,
A.
,
Wolff
,
M.
,
Heister
,
S.
, and
Fisher
,
T. S.
,
2017
, “
Dynamic Thermal Management for Aerospace Technology: Review and Outlook
,”
J. Thermophys. Heat. Transfer.
,
31
(
1
), pp.
86
98
.
4.
Alleyne
,
A. G.
, and
Aksland
,
C. T.
,
2022
, “
Control as an Enabler for Electrified Mobility
,”
Annu. Rev. Control, Rob. Auton. Syst.
,
5
(
1
), pp.
1
30
.
5.
Nash
,
A. L.
, and
Jain
,
N.
,
2020
, “
Combined Plant and Control Co-Design for Robust Disturbance Rejection in Thermal-Fluid Systems
,”
IEEE Trans. Control Syst. Technol.
,
28
(
6
), pp.
2532
2539
.
6.
Nash
,
A. L.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2021
, “
Robust Control Co-Design With Receding-Horizon MPC
,”
American Control Conference
,
New Orleans, LA
,
May 25–28
, pp.
373
379
.
7.
Nash
,
A. L.
,
2024
, “
Predictive Control Co-Design: A Single-Level Optimization Framework for Computationally-Efficient Approximation of Recursive Model Predictive Control in Control Co-Design
,”
ASME J. Dyn. Syst. Meas. Control.
,
146
(
4
), p.
041002
.
8.
Docimo
,
D. J.
,
Kang
,
Z.
,
James
,
K. A.
, and
Alleyne
,
A. G.
,
2021
, “
Plant and Controller Optimization for Power and Energy Systems With Model Predictive Control
,”
ASME J. Dyn. Syst. Meas. Contr.
,
143
(
8
), p.
081009
.
9.
Russell
,
K. M.
, and
Alleyne
,
A. G.
,
2024
, “
Control Co-Design of Automotive Vapor Compression Systems
,”
American Control Conference
,
Toronto, Canada
,
July 10–12
, pp.
2536
2542
.
10.
Aksland
,
C.
,
Clark
,
D. L.
,
Lupp
,
C. A.
, and
Alleyne
,
A. G.
,
2024
, “
Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
,”
ASME J. Dyn. Syst. Meas. Contr.
,
146
(
1
), p.
011104
.
11.
Thompson
,
A. F.
,
Iezzi
,
A. J.
,
Pangborn
,
H. C.
,
Madabhushi
,
R. K.
, and
Atassi
,
O. V.
,
2023
, “
Combined Design and Open-Loop Control Optimization for Propulsion, Power, and Thermal Management of Hybrid-electric Aircraft
,”
IEEE Conference on Control Technology and Applications
,
Bridgetown, Barbados
,
Aug. 16–18
, p.
011104
.
12.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
.
13.
Azad
,
S.
, and
Herber
,
D. R.
,
2022
, “
Control Co-Design Under Uncertainties: Formulations
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
, p. V03AT03A008.
14.
Azad
,
S.
, and
Herber
,
D. R.
,
2023
, “
An Overview of Uncertain Control Co-Design Formulations
,”
ASME J. Mech. Des.
,
145
(
9
), p.
091709
.
15.
Bird
,
T. J.
,
Siefert
,
J. A.
,
Pangborn
,
H. C.
, and
Jain
,
N.
,
2024
, “
A Set-Based Approach for Robust Control Co-Design
,”
American Control Conference
,
Toronto, Canada
,
July 10–12
, pp.
2564
2571
.
16.
Althoff
,
M.
,
Frehse
,
G.
, and
Girard
,
A.
,
2021
, “
Set Propagation Techniques for Reachability Analysis
,”
Annu. Rev. Control Rob. Auton. Syst.
,
4
(
1
), pp.
369
395
.
17.
Bird
,
T. J.
,
Pangborn
,
H. C.
,
Jain
,
N.
, and
Koeln
,
J. P.
,
2023
, “
Hybrid Zonotopes: A New Set Representation for Reachability Analysis of Mixed Logical Dynamical Systems
,”
Automatica
,
154
(
C
), p.
111107
.
18.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
,
Cambridge, UK
.
19.
Bemporad
,
A.
, and
Morari
,
M.
,
1998
, “
Control of Systems Integrating Logic, Dynamics, and Constraints
,”
Automatica
,
35
(
3
), pp.
407
427
.
20.
Torrisi
,
F.
, and
Bemporad
,
A.
,
2004
, “
HYSDEL—A Tool for Generating Computational Hybrid Models for Analysis and Synthesis Problems
,”
IEEE Trans. Control Syst. Technol.
,
12
(
2
), pp.
235
249
.
21.
Angeli
,
D.
, and
Sontag
,
E.
,
2003
, “
Monotone Control Systems
,”
IEEE. Trans. Automat. Contr.
,
48
(
10
), pp.
1684
1698
.
You do not currently have access to this content.