Abstract

The application of magnetic fields during solidification processes has been reported to control the flow and turbulence in the melt pool and leads to improvements in the microstructure, namely crystallographic orientations and grain size. In order to maximize the benefits of assisting a welding process with externally applied magnetic fields, it is necessary to optimize the weld setup, as the relative distances between magnets and weldment can remarkably affect the magnitude and direction of the applied field. Furthermore, the usage of permanent magnets requires an additional caution as ferromagnetic magnets demagnetize as temperature increases, up to the Curie temperature, when they become paramagnetic. This work computationally models magnetically assisted welding in stainless steel 316L with SmCo26 permanent magnets, while providing a complete account for the heat transfer phenomena and subsequent demagnetization. The number of magnets, the orientation of their poles, and their position relative to the weld for minimal demagnetization and maximum magnetic field in the melt pool are optimized. It was found that three magnetic field orientations concentrate the magnetic strength at the weld, referred to as “parallel,” “oblique,” and “perpendicular.” A 20 cm flat butt joint weldment with optimized arrangements yielded a drop of only 0.21% in the perpendicular arrangement, and as much as 1.53% in the parallel, with initial magnitudes of 0.3325 T and 0.3796 T, respectively.

References

1.
Rong
,
Y.
,
Huang
,
Y.
,
Zhang
,
G.
,
Mi
,
G.
, and
Shao
,
W.
,
2017
, “
Laser Beam Welding of 316L T-Joint: Microstructure, Microhardness, Distortion, and Residual Stress
,”
Int. J. Adv. Manuf. Technol.
,
90
(
5–8
), pp.
2263
2270
. 10.1007/s00170-016-9501-8
2.
Rong
,
Y.
,
Zhang
,
G.
, and
Huang
,
Y.
,
2017
, “
Study on Deformation and Residual Stress of Laser Welding 316L T-Joint Using 3D/Shell Finite Element Analysis and Experiment Verification
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2077
2085
. 10.1007/s00170-016-9246-4
3.
Vemanaboina
,
H.
,
Akella
,
S.
, and
Buddu
,
R. K.
,
2014
, “
Welding Process Simulation Model for Temperature and Residual Stress Analysis
,”
Procedia Mater. Sci.
,
6
, pp.
1539
1546
. 10.1016/j.mspro.2014.07.135
4.
Vijayanand
,
V. D.
,
Laha
,
K.
,
Parameswaran
,
P.
,
Ganesan
,
V.
, and
Mathew
,
M. D.
,
2014
, “
Microstructural Evolution During Creep of 316LN Stainless Steel Multi-pass Weld Joints
,”
Mater. Sci. Eng., A
,
607
, pp.
138
144
. 10.1016/j.msea.2014.03.138
5.
Kim
,
B.
,
Jeong
,
C.
, and
Lim
,
B.
,
2008
, “
Creep Behavior and Microstructural Damage of Martensitic P92 Steel Weldment
,”
Mater. Sci. Eng., A
,
483–484
(
1–2C
), pp.
544
546
. 10.1016/j.msea.2006.12.151
6.
Wang
,
J.
, and
Yi
,
B.
,
2019
, “
Benchmark Investigation of Welding-Induced Buckling and Its Critical Condition During Thin Plate Butt Welding
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), pp.
1
11
. 10.1115/1.4043719
7.
Withers
,
P. J.
,
2007
, “
Residual Stress and Its Role in Failure
,”
Reports Prog. Phys.
,
70
(
12
), pp.
2211
2264
. 10.1088/0034-4885/70/12/R04
8.
Arsić
,
M.
,
Bošnjak
,
S.
,
Zrnić
,
N.
,
Sedmak
,
A.
, and
Gnjatović
,
N.
,
2011
, “
Bucket Wheel Failure Caused by Residual Stresses in Welded Joints
,”
Eng. Fail. Anal.
,
18
(
2
), pp.
700
712
. 10.1016/j.engfailanal.2010.11.009
9.
Gao
,
J.
,
Gindy
,
N.
, and
Chen
,
X.
,
2006
, “
An Automated GD&T Inspection System Based on Non-contact 3D Digitization
,”
Int. J. Prod. Res.
,
44
(
1
), pp.
117
134
. 10.1080/09638280500219737
10.
Mohanty
,
U. K.
,
Sharma
,
A.
,
Nakatani
,
M.
,
Kitagawa
,
A.
,
Tanaka
,
M.
, and
Suga
,
T.
,
2018
, “
A Semi-analytical Nonlinear Regression Approach for Weld Profile Prediction: A Case of Alternating Current Square Waveform Submerged arc Welding of Heat Resistant Steel
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), pp.
1
11
. 10.1115/1.4040983
11.
Chen
,
R.
,
Wang
,
C.
,
Jiang
,
P.
,
Shao
,
X.
,
Zhao
,
Z.
,
Gao
,
Z.
, and
Yue
,
C.
,
2016
, “
Effect of Axial Magnetic Field in the Laser Beam Welding of Stainless Steel to Aluminum Alloy
,”
Mater. Des.
,
109
, pp.
146
152
. 10.1016/j.matdes.2016.07.064
12.
Chen
,
R.
,
Jiang
,
P.
,
Shao
,
X.
,
Mi
,
G.
,
Wang
,
C.
,
Geng
,
S.
,
Gao
,
S.
, and
Cao
,
L.
,
2017
, “
Improvement of low-Temperature Impact Toughness for 304 Weld Joint Produced by Laser-MIG Hybrid Welding Under Magnetic Field
,”
J. Mater. Process. Technol.
,
247
, pp.
306
314
. 10.1016/j.jmatprotec.2017.04.004
13.
Chen
,
R.
,
Jiang
,
P.
,
Shao
,
X.
,
Mi
,
G.
, and
Wang
,
C.
,
2018
, “
Effect of Magnetic Field on Crystallographic Orientation for Stainless Steel 316L Laser-MIG Hybrid Welds and its Strengthening Mechanism on Fatigue Resistance
,”
Int. J. Fatigue
,
112
, pp.
308
317
. 10.1016/j.ijfatigue.2018.03.034
14.
Rong
,
Y.
,
Huang
,
Y.
,
Xu
,
J.
,
Zheng
,
H.
, and
Zhang
,
G.
,
2017
, “
Numerical Simulation and Experiment Analysis of Angular Distortion and Residual Stress in Hybrid Laser-Magnetic Welding
,”
J. Mater. Process. Technol.
,
245
, pp.
270
277
. 10.1016/j.jmatprotec.2017.02.031
15.
Bachmann
,
M.
,
Avilov
,
V.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2016
, “
Numerical Assessment and Experimental Verification of the Influence of the Hartmann Effect in Laser Beam Welding Processes by Steady Magnetic Fields
,”
Int. J. Therm. Sci.
,
101
, pp.
24
34
. 10.1016/j.ijthermalsci.2015.10.030
16.
Avilov
,
V. V.
,
Gumenyuk
,
A.
,
Lammers
,
M.
, and
Rethmeier
,
M.
,
2012
, “
PA Position Full Penetration High Power Laser Beam Welding of up to 30 mm Thick AlMg3 Plates Using Electromagnetic Weld Pool Support
,”
Sci. Technol. Weld. Join.
,
17
(
2
), pp.
128
133
. 10.1179/1362171811Y.0000000085
17.
Bachmann
,
M.
,
Avilov
,
V.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2013
, “
About the Influence of a Steady Magnetic Field on Weld Pool Dynamics in Partial Penetration High Power Laser Beam Welding of Thick Aluminium Parts
,”
Int. J. Heat Mass Transf.
,
60
(
1
), pp.
309
321
. 10.1016/j.ijheatmasstransfer.2013.01.015
18.
Bachmann
,
M.
,
Avilov
,
V.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2014
, “
Experimental and Numerical Investigation of an Electromagnetic Weld Pool Support System for High Power Laser Beam Welding of Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
578
591
. 10.1016/j.jmatprotec.2013.11.013
19.
Curiel
,
F. F.
,
García
,
R.
,
López
,
V. H.
, and
González-Sánchez
,
J.
,
2011
, “
Effect of Magnetic Field Applied During Gas Metal Arc Welding on the Resistance to Localised Corrosion of the Heat Affected Zone in AISI 304 Stainless Steel
,”
Corros. Sci.
,
53
(
7
), pp.
2393
2399
. 10.1016/j.corsci.2011.03.022
20.
Wang
,
L.
,
Yao
,
J.
,
Hu
,
Y.
, and
Song
,
S.
,
2015
, “
Suppression Effect of a Steady Magnetic Field on Molten Pool During Laser Remelting
,”
Appl. Surf. Sci.
,
351
, pp.
794
802
. 10.1016/j.apsusc.2015.05.179
21.
Arnold
,
D. P.
, and
Wang
,
N.
,
2009
, “
Permanent Magnets for MEMS
,”
J. Microelectromechanical Syst.
,
18
(
6
), pp.
1255
1266
. 10.1109/JMEMS.2009.2034389
22.
Rosado-Carrasco
,
J.
,
Krupp
,
U.
,
López-Morelos
,
V. H.
,
Giertler
,
A.
,
García-Rentería
,
M. A.
, and
González-Sánchez
,
J.
,
2019
, “
Effect of a Magnetic Field Applied During Fusion Welding on the Fatigue Damage of 2205 Duplex Stainless Steel Joints
,”
Int. J. Fatigue
,
121
, pp.
243
251
. 10.1016/j.ijfatigue.2018.12.022
23.
Schneider
,
A.
,
Avilov
,
V.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2013
, “
Laser Beam Welding of Aluminum Alloys Under the Influence of an Electromagnetic Field
,”
Phys. Procedia
,
41
(
4
), pp.
4
11
. 10.1016/j.phpro.2013.03.045
24.
Li
,
Y.
,
Lin
,
Z.
,
Chen
,
G.
,
Wang
,
Y.
, and
Xi
,
S.
,
2002
, “
Study on Moving GTA Weld Pool in an Externally Applied Longitudinal Magnetic Field With Experimental and Finite Element Methods
,”
Model. Simul. Mater. Sci. Eng.
,
10
(
6
), pp.
781
798
. 10.1088/0965-0393/10/6/311
25.
Li
,
Y.
,
Lin
,
Z.
,
Shen
,
Q.
, and
Lai
,
X.
,
2011
, “
Numerical Analysis of Transport Phenomena in Resistance Spot Welding Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), pp.
1
8
.
26.
Valencia
,
J. J.
, and
Quested
,
P. N.
,
2013
, “
Thermophysical Properties
,”
ASM
,
15
, pp.
468
481
.
27.
Das
,
D. K.
,
Kumar
,
K.
,
Frost
,
R. T.
, and
Chang
,
C. W.
,
1980
,
Technical Report for the National Aeronautics and Space Administration
.
28.
Kim
,
C. S.
,
1975
,
Technical Report for the Argonne National Lab, IL
.
30.
Chen
,
Q.
,
Fei
,
F.
,
Yu
,
S.
,
Liu
,
C.
,
Tang
,
J.
, and
Yang
,
X.
,
2020
, “
Numerical Simulation of Temperature Field and Residual Stresses in Stainless Steel T-Joint
,”
Trans. Indian Inst. Met.
,
73
(
3
), pp.
751
761
. 10.1007/s12666-020-01890-3
31.
Dagel
,
D. J.
,
Grossetete
,
G. D.
, and
Maccallum
,
D. O.
,
2016
,
Technical Report for Sandia National Laboratories, Albuquerque, NM and Livermore, CA
.
You do not currently have access to this content.