Abstract

The primary goal of the paper is to monitor the health of the spindle in machine tools to ensure optimal performance and reduce costly downtimes. Spindle health monitoring is essential to detect wear and cracks in spindle bearings, which can be challenging due to their gradual development and hidden locations. The proposed approach combines physics-based modeling and data-driven techniques to monitor spindle health effectively. In Part I and Part II of the paper, mathematical models of bearing faults and spindle imbalance are integrated into the digital model of the spindle. This allows for simulating the operation of the spindle both with and without faults. The integration of fault models enables the generation of vibrations at sensor locations along the spindle shaft. The generated vibration data from the physics-based model are used to train a recurrent neural network-based (RNN) fault detection algorithm. The RNN learns from the labeled vibration spectra to identify different fault conditions. Bayesian optimization is used to automatically tune the hyperparameters governing the accuracy and efficiency of the learning models during the training process. The RNN classifiers are further fine-tuned using a small set of experimentally collected data for the generalization of the model on real-world data. Once the RNN classifier is trained, it can distinguish between different types of damage and identify their specific locations on the spindle assembly. The proposed algorithms achieved an accuracy of 98.43% on experimental data sets that were not used in training the network.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Yang
,
Z.
,
Chen
,
H.
, and
Yu
,
T.
,
2018
, “
Effects of Rolling Bearing Configuration on Stiffness of Machine Tool Spindle
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
232
(
5
), pp.
775
785
.
2.
Bachschmid
,
N.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2003
, “
Identification of Multiple Faults in Rotor Systems
,”
J. Sound Vib.
,
254
(
2
), pp.
327
366
.
3.
Pennacchi
,
P.
,
Bachschmid
,
N.
,
Vania
,
A.
,
Zanetta
,
G. A.
, and
Gregori
,
L.
,
2006
, “
Use of Modal Representation for the Supporting Structure in Model-Based Fault Identification of Large Rotating Machinery: Part 1 – Theoretical Remarks
,”
Mech. Syst. Signal Process.
,
20
(
3
), pp.
662
681
.
4.
Lees
,
A. W.
,
Sinha
,
J. K.
, and
Friswell
,
M. I.
,
2009
, “
Model-Based Identification of Rotating Machines
,”
Mech. Syst. Signal Process.
,
23
(
6
), pp.
1884
1893
.
5.
Chandra
,
N. H.
, and
Sekhar
,
A. S.
,
2016
, “
Fault Detection in Rotor Bearing Systems Using Time Frequency Techniques
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
105
133
.
6.
Wang
,
Q.
,
Li
,
F.
,
Tang
,
Y.
, and
Xu
,
Y.
,
2019
, “
Integrating Model-Driven and Data-Driven Methods for Power System Frequency Stability Assessment and Control
,”
IEEE Trans. Power Syst.
,
34
(
6
), pp.
4557
4568
.
7.
Taplak
,
H.
,
Erkaya
,
S.
, and
Uzmay
,
I.
,
2013
, “
Experimental Analysis on Fault Detection for a Direct Coupled Rotor-Bearing System
,”
Measurement (Lond.)
,
46
(
1
), pp.
336
344
.
8.
Hao
,
S.
,
Ge
,
F. X.
,
Li
,
Y.
, and
Jiang
,
J.
,
2020
, “
Multisensor Bearing Fault Diagnosis Based on one-Dimensional Convolutional Long Short-Term Memory Networks
,”
Measurement (Lond.)
,
159
, p.
107802
.
9.
Gan
,
M.
,
Wang
,
C.
, and
Zhu
,
C.
,
2016
, “
Construction of Hierarchical Diagnosis Network Based on Deep Learning and Its Application in the Fault Pattern Recognition of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
72–73
, pp.
92
104
.
10.
Hamdani
,
S.
,
Touhami
,
O.
,
Ibtiouen
,
R.
,
Fadel
,
M.
, and
Régnier
,
J.
,
2011
, “
Neural Network Technique for Induction Motor Rotor Faults Classification-Dynamic Eccentricity and Broken Bar Faults
,”
SDEMPED 2011 – 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives
,
Bologna, Italy
,
Sept. 5–8
, pp.
626
631
.
11.
Samanta
,
B.
,
Al-Balushi
,
K. R.
, and
Al-Araimi
,
S. A.
,
2003
, “
Artificial Neural Networks and Support Vector Machines With Genetic Algorithm for Bearing Fault Detection
,”
Eng. Appl. Artif. Intell.
,
16
(
7–8
), pp.
657
665
.
12.
Qiu
,
H.
,
Lee
,
J.
,
Lin
,
J.
, and
Yu
,
G.
,
2003
, “
Robust Performance Degradation Assessment Methods for Enhanced Rolling Element Bearing Prognostics
,”
Adv. Eng. Inform.
,
17
(
3–4
), pp.
127
140
.
13.
Ainapure
,
A.
,
Siahpour
,
S.
,
Li
,
X.
,
Majid
,
F.
, and
Lee
,
J.
,
2022
, “
Intelligent Robust Cross-Domain Fault Diagnostic Method for Rotating Machines Using Noisy Condition Labels
,”
Mathematics
,
10
(
3
), p.
455
.
14.
Kinnebrew
,
J. S.
,
Segedy
,
J. R.
, and
Biswas
,
G.
,
2017
, “
Integrating Model-Driven and Data-Driven Techniques for Analyzing Learning Behaviors in Open-Ended Learning Environments
,”
IEEE Trans. Learn. Technol.
,
10
(
2
), pp.
140
153
.
15.
Wang
,
J.
,
Li
,
Y.
,
Gao
,
R. X.
, and
Zhang
,
F.
,
2022
, “
Hybrid Physics-Based and Data-Driven Models for Smart Manufacturing: Modelling, Simulation, and Explainability
,”
J. Manuf. Syst.
,
63
, pp.
381
391
.
16.
Tai
,
C. Y.
, and
Altintas
,
Y.
,
2023
, “
A Hybrid Physics and Data-Driven Model for Spindle Fault Detection
,”
CIRP Ann.
,
72
(
1
), pp.
297
300
.
17.
Vyas
,
N. S.
, and
Satishkumar
,
D.
,
2001
, “
Artificial Neural Network Design for Fault Identification in a Rotor-Bearing System
,”
Mech. Mach. Theory
,
36
(
2
), pp.
157
175
.
18.
Singh
,
J.
,
Azamfar
,
M.
,
Li
,
F.
, and
Lee
,
J.
,
2021
, “
A Systematic Review of Machine Learning Algorithms for Prognostics and Health Management of Rolling Element Bearings: Fundamentals, Concepts and Applications
,”
Meas. Sci. Technol.
,
32
(
1
), p.
012001
.
19.
Zhou
,
J.
,
Zheng
,
L.
,
Wang
,
Y.
,
Wang
,
C.
, and
Gao
,
R. X.
,
2022
, “
Automated Model Generation for Machinery Fault Diagnosis Based on Reinforcement Learning and Neural Architecture Search
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
12
.
20.
Huang
,
R.
,
Xi
,
L.
,
Li
,
X.
,
Richard Liu
,
C.
,
Qiu
,
H.
, and
Lee
,
J.
,
2007
, “
Residual Life Predictions for Ball Bearings Based on Self-Organizing Map and Back Propagation Neural Network Methods
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
193
207
.
21.
Ding
,
Y.
,
Ma
,
L.
,
Ma
,
J.
,
Suo
,
M.
,
Tao
,
L.
,
Cheng
,
Y.
, and
Lu
,
C.
,
2019
, “
Intelligent Fault Diagnosis for Rotating Machinery Using Deep Q-Network Based Health State Classification: A Deep Reinforcement Learning Approach
,”
Adv. Eng. Inform.
,
42
, p.
100977
.
22.
Yeh
,
C. W.
, and
Chen
,
R.
,
2018
, “
Using Convolutional Neural Network for Vibration Fault Diagnosis Monitoring in Machinery
,”
Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing, ICAM 2018
,
Yunlin, Taiwan
,
Nov. 16–18
, pp.
246
249
.
23.
Pandhare
,
V.
,
Singh
,
J.
, and
Lee
,
J.
,
2019
, “
Convolutional Neural Network Based Rolling-Element Bearing Fault Diagnosis for Naturally Occurring and Progressing Defects Using Time-Frequency Domain Features
,”
Proceedings – 2019 Prognostics and System Health Management Conference, PHM-Paris 2019
,
Paris, France
,
May 2–5
, Institute of Electrical and Electronics Engineers Inc., pp.
320
326
.
24.
Wang
,
H.
,
Xu
,
J.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2020
, “
A New Intelligent Bearing Fault Diagnosis Method Using SDP Representation and SE-CNN
,”
IEEE Trans. Instrum. Meas.
,
69
(
5
), pp.
2377
2389
.
25.
Liu
,
D.
,
Cheng
,
W.
,
Zhang
,
J.
,
Gao
,
R. X.
, and
Wen
,
W.
,
2021
, “
Integrated Method of Generalized Demodulation and Artificial Neural Network for Robust Bearing Fault Recognition
,”
Procedia Manuf.
,
53
, pp.
628
635
.
26.
Luo
,
P.
, and
Hu
,
Y.
,
2019
, “
Research on Rolling Bearing Fault Identification Method Based on LSTM Neural Network
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
542
(
1
), p.
012048
.
27.
Choe
,
D. E.
,
Kim
,
H. C.
, and
Kim
,
M. H.
,
2021
, “
Sequence-Based Modeling of Deep Learning With LSTM and GRU Networks for Structural Damage Detection of Floating Offshore Wind Turbine Blades
,”
Renewable Energy
,
174
, pp.
218
235
.
28.
Moradzadeh
,
A.
,
Teimourzadeh
,
H.
,
Mohammadi-Ivatloo
,
B.
, and
Pourhossein
,
K.
,
2022
, “
Hybrid CNN-LSTM Approaches for Identification of Type and Locations of Transmission Line Faults
,”
Int. J. Electr. Power Energy Syst.
,
135
, p.
107563
.
29.
Li
,
E.
,
Zhou
,
J.
,
Yang
,
C.
,
Wang
,
M.
,
Li
,
Z.
,
Zhang
,
H.
, and
Jiang
,
T.
,
2022
, “
CNN-GRU Network-Based Force Prediction Approach for Variable Working Condition Milling Clamping Points of Deformable Parts
,”
Int. J. Adv. Manuf. Technol.
,
119
(
11–12
), pp.
7843
7863
.
30.
Sony
,
S.
,
Gamage
,
S.
,
Sadhu
,
A.
, and
Samarabandu
,
J.
,
2022
, “
Vibration-Based Multiclass Damage Detection and Localization Using Long Short-Term Memory Networks
,”
Structures
,
35
, pp.
436
451
.
31.
Cao
,
Y.
, and
Altintas
,
Y.
,
2004
, “
A General Method for the Modeling of Spindle-Bearing Systems
,”
ASME J. Mech. Des.
,
126
(
6
), pp.
1089
1104
.
32.
Cao
,
Y.
, and
Altintas
,
Y.
,
2007
, “
Modeling of Spindle-Bearing and Machine Tool Systems for Virtual Simulation of Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1342
1350
.
33.
Altintas
,
Y.
, and
Cao
,
Y.
,
2005
, “
Virtual Design and Optimization of Machine Tool Spindles
,”
CIRP Ann. Manuf. Technol.
,
54
(
1
), pp.
379
382
.
34.
M. Inc.
,
2009
,
SpindlePro
,
The University of British Columbia
,
Vancouver, Canada
.
35.
Cho
,
K.
,
van Merrienboer
,
B.
,
Bahdanau
,
D.
, and
Bengio
,
Y.
,
2014
, “
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
,”
Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation
,
Doha, Qatar
,
Oct. 25
, pp.
103
111
.
36.
Chung
,
J.
,
Gulcehre
,
C.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2014
, “
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
,” arXiv preprint.
37.
Sorsa
,
T.
,
Koivo
,
H. N.
, and
Koivisto
,
H.
,
1991
, “
Neural Networks in Process Fault Diagnosis
,”
IEEE Trans. Syst. Man Cybern.
,
21
(
4
), pp.
815
825
.
38.
Glorot
,
X.
, and
Bengio
,
Y.
,
2010
, “
Understanding the Difficulty of Training Deep Feedforward Neural Networks
,”
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
,
Sardinia, Italy
,
May 13-15
.
39.
Hu
,
W.
,
Xiao
,
L.
, and
Pennington
,
J.
,
2020
, “
Provable Benefit of Orthogonal Initialization in Optimizing Deep Linear Networks
,”
International Conference on Learning Representations (ICLR) 2020
,
Virtual Conference
,
Apr. 26
.
40.
The Math Works Inc.
,
2020
,
MATLAB
,
The MathWorks, Inc.
,
Natick, MA
.
41.
Wu
,
J.
,
Chen
,
X. Y.
,
Zhang
,
H.
,
Xiong
,
L. D.
,
Lei
,
H.
, and
Deng
,
S. H.
,
2019
, “
Hyperparameter Optimization for Machine Learning Models Based on Bayesian Optimization
,”
J. Electron. Sci. Technol.
,
17
(
1
), pp.
26
40
.
42.
Gelbart
,
M. A.
,
Snoek
,
J.
, and
Adams
,
R. P.
,
2014
, “
Bayesian Optimization With Unknown Constraints
,”
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence
,
Quebec, Canada
,
July 23–27
, pp.
250
259
.
43.
Bull
,
A. D.
,
2011
, “
Convergence Rates of Efficient Global Optimization Algorithms
,”
J. Mach. Lear. Res.
,
12
(
88
), pp.
2879
2904
.
44.
Pomerantsev
,
A. L.
, and
Rodionova
,
O. Y.
,
2021
, “
New Trends in Qualitative Analysis: Performance, Optimization, and Validation of Multi-class and Soft Models
,”
TrAC, Trends Anal. Chem.
,
143
, p.
116372
.
45.
Lajnef
,
T.
,
Chaibi
,
S.
,
Ruby
,
P.
,
Aguera
,
P. E.
,
Eichenlaub
,
J. B.
,
Samet
,
M.
,
Kachouri
,
A.
, and
Jerbi
,
K.
,
2015
, “
Learning Machines and Sleeping Brains: Automatic Sleep Stage Classification Using Decision-Tree Multi-class Support Vector Machines
,”
J. Neurosci. Methods
,
250
, pp.
94
105
.
You do not currently have access to this content.