Abstract

With the continuous advancement of additive manufacturing (AM) processes, ensuring that traceability and security for AM components has become paramount. Embedding unique identification features in AM components, akin to fingerprints, is essential for logistics management, certification, and counterfeiting prevention. In this article, we propose a novel approach utilizing quick response (QR) codes embedded via arrangements of unmelted features in rectangular, cylindrical, and spherical shapes within steel blocks (MPIF 4406) fabricated using laser powder bed fusion (LPBF). While computed tomography (CT) has been the dominant method for reading embedded QR codes, this article utilizes high-frequency phased array ultrasonic testing (PAUT) for reading these QR codes for the first time. Due to the layer-by-layer manufacturing process, the up-facing printed surfaces of the QR codes exhibit smooth characteristics (upskin), while the down-facing surfaces are rough (downskin). Ultrasound images from both surfaces are captured, each yielding distinct results. These captured images undergo image processing to compare them with their original designs. Linear and nonlinear image processing filters are applied to enhance the captured images, followed by feature extraction using two methods, Residual Network-50 (ResNet-50) and Histogram of Oriented Gradients (HOG), to evaluate their similarity to the original QR codes. The results reveal similarity percentages ranging from 70% to 85%. Most QR code images are readable, with upskin ultrasonic data providing better readability. This research underscores high-frequency PAUT as a promising solution for the rapid scanning of embedded QR codes in metal AM components, showcasing its potential for enhancing traceability and security in AM processes.

References

1.
DebRoy
,
T.
,
Mukherjee
,
T.
,
Milewski
,
J. O.
,
Elmer
,
J. W.
,
Ribic
,
B.
,
Blecher
,
J. J.
, and
Zhang
W.
,
2019
, “
Scientific, Technological and Economic Issues in Metal Printing and Their Solutions
,”
Nat. Mater.
,
18
(
10
), pp.
1026–
1032
.
2.
DebRoy
,
T.
,
Mukherjee
,
T.
,
Wei
,
H. L.
,
Elmer
,
J. W.
, and
Milewski
,
J. O.
,
2021
, “
Metallurgy, Mechanistic Models and Machine Learning in Metal Printing
,”
Nat. Rev. Mater.
,
6
(
1
), pp.
48
68
.
3.
Küpper
,
D.
,
Heising
,
W.
,
Corman
,
G.
,
Wolfgang
,
M.
,
Knizek
,
C.
, and
Lukic
,
V.
,
2017
, “
Get Ready for Industrialized Additive Manufacturing
,”
Boston Consulting Group
, Atlanta, GA.
4.
Wohlers
,
T. T.
,
Campbell
,
I.
,
Huff
,
R.
,
Diegel
,
O.
, and
Kowen
,
J.
,
2019
,
Wohlers Report 2019: 3D Printing and Additive Manufacturing State of the Industry
,
Wohlers Associates
,
Washington, DC
.
5.
Yampolskiy
,
M.
,
King
,
W. E.
,
Gatlin
,
J.
,
Belikovetsky
,
S.
,
Brown
,
A.
,
Skjellum
,
A.
, and
Elovici
,
Y.
,
2018
, “
Security of Additive Manufacturing: Attack Taxonomy and Survey
,”
Addit. Manuf.
,
21
, pp.
431
457
.
6.
Mondal
,
K.
,
Karkkainen
,
R.
,
Martinez
,
O.
,
Sikkema
,
I.
,
Mathur
,
M.
,
Hollifield
,
S.
, and
Li
,
M.
,
2023
, “
Advanced Manufacturing Technologies for Enhancing Security in Nuclear and Radiological Materials Transport
,”
Int. J. Adv. Nucl. React. Des. Technol.
,
5
(
3
), pp.
144
150
.
7.
Rani
,
S.
,
Jining
,
D.
,
Shoukat
,
K.
,
Shoukat
,
M. U.
, and
Nawaz
,
S. A.
,
2024
, “
A Human–Machine Interaction Mechanism: Additive Manufacturing for Industry 5.0—Design and Management
,”
Sustainability
,
16
(
10
), p.
4158
.
8.
Ukwandu
,
E.
,
Hewage
,
C.
, and
Hindy
,
H.
,
2024
, “
Editorial: Cyber Security in the Wake of Fourth Industrial Revolution: Opportunities and Challenges
,”
Front. Big Data
,
7
, p.
1369159
.
9.
Gupta
,
N.
,
Tiwari
,
A.
,
Bukkapatnam
,
S. T. S.
, and
Karri
,
R.
,
2020
, “
Additive Manufacturing Cyber-Physical System: Supply Chain Cybersecurity and Risks
,”
IEEE Access
,
8
, pp.
47322
47333
.
10.
Belikovetsky
,
S.
,
Yampolskiy
,
M.
,
Toh
,
J.
,
Gatlin
,
J.
, and
Elovici
,
Y.
,
2017
, “
dr0wned—{Cyber-Physical} Attack With Additive Manufacturing
,”
11th USENIX Workshop on Offensive Technologies (WOOT 17)
,
Vancouver, BC, Canada
,
Aug. 14–15
.
11.
Moore
,
S.
,
Armstrong
,
P.
,
McDonald
,
T.
, and
Yampolskiy
,
M.
,
2016
, “
Vulnerability Analysis of Desktop 3D Printer Software
,”
2016 Resilience Week (RWS)
,
Chicago, IL
,
Aug. 16–18
, IEEE, pp.
46
51
.
12.
Sturm
,
L. D.
,
Williams
,
C. B.
,
Camelio
,
J. A.
,
White
,
J.
, and
Parker
,
R.
,
2017
, “
Cyber-Physical Vulnerabilities in Additive Manufacturing Systems: A Case Study Attack on the. STL File With Human Subjects
,”
J. Manuf. Syst.
,
44
, pp.
154
164
.
13.
Zeltmann
,
S. E.
,
Gupta
,
N.
,
Tsoutsos
,
N. G.
,
Maniatakos
,
M.
,
Rajendran
,
J.
, and
Karri
,
R.
,
2016
, “
Manufacturing and Security Challenges in 3D Printing
,”
JOM
,
68
(
7
), pp.
1872
1881
.
14.
Eisenbarth
,
D.
,
Stoll
,
P.
,
Klahn
,
C.
,
Heinis
,
T. B.
,
Meboldt
,
M.
, and
Wegener
,
K.
,
2020
, “
Unique Coding for Authentication and Anti-Counterfeiting by Controlled and Random Process Variation in L-PBF and L-DED
,”
Addit. Manuf.
,
35
, p.
101298
.
15.
Sola
,
A.
,
Sai
,
Y.
,
Trinchi
,
A.
,
Chu
,
C.
,
Shen
,
S.
, and
Chen
,
S.
,
2021
, “
How Can We Provide Additively Manufactured Parts With a Fingerprint? A Review of Tagging Strategies in Additive Manufacturing
,”
Materials
,
15
(
1
), p.
85
.
16.
Wei
,
C.
,
Sun
,
Z.
,
Huang
,
Y.
, and
Li
,
L.
,
2018
, “
Embedding Anti-Counterfeiting Features in Metallic Components via Multiple Material Additive Manufacturing
,”
Addit. Manuf.
,
24
, pp.
1
12
.
17.
Chen
,
F.
,
Luo
,
Y.
,
Tsoutsos
,
N. G.
,
Maniatakos
,
M.
,
Shahin
,
K.
, and
Gupta
,
N.
,
2019
, “
Embedding Tracking Codes in Additive Manufactured Parts for Product Authentication
,”
Adv. Eng. Mater.
,
21
(
4
), p.
1800495
.
18.
Zaw
,
M. M.
,
Cao
,
P.
,
Ong
,
R. G. K.
,
Neo
,
D. C. J.
, and
Lay
,
C. L.
,
2024
, “
3D Security Labels: Photostable Multimaterial Multilayered QR Codes via Two-Photon Lithography
,”
ACS Appl. Opt. Mater.
,
2
(
2
), pp.
276
283
.
19.
Peng
,
S.
,
Sun
,
S.
,
Zhu
,
Y.
,
Qiu
,
J.
, and
Yang
,
H.
,
2023
, “
Colourful 3D Anti-Counterfeiting Label Using Nanoscale Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
18
(
1
), p.
e2179929
. https://www.tandfonline.com/doi/abs/10.1080/17452759.2023.2179929.
20.
Schmitz
,
T.
,
Costa
,
L.
,
Canfield
,
B. K.
,
Kincaid
,
J.
,
Zameroski
,
R.
,
Garcia
,
R.
,
Frederick
,
C.
,
Rossy
,
A. M.
, and
Moeller
,
T. M.
,
2023
, “
Embedded QR Code for Part Authentication in Additive Friction Stir Deposition
,”
Manuf. Lett.
,
35
, pp.
16
19
.
21.
Paz
,
J.
,
Wilbig
,
J.
,
Aumund-Kopp
,
C.
, and
Petzoldt
,
F.
,
2014
, “
RFID Transponder Integration in Metal Surgical Instruments Produced by Additive Manufacturing
,”
Powder Metall.
,
57
(
5
), pp.
365
372
.
22.
Binder
,
M.
,
Kirchbichler
,
L.
,
Seidel
,
C.
,
Anstaett
,
C.
,
Schlick
,
G.
, and
Reinhart
,
G.
,
2019
, “
Design Concepts for the Integration of Electronic Components Into Metal Laser-Based Powder Bed Fusion Parts
,”
Procedia CIRP
,
81
, pp.
992
997
.
23.
Wei
,
C.
, and
Li
,
L.
,
2021
, “
Recent Progress and Scientific Challenges in Multi-Material Additive Manufacturing via Laser-Based Powder Bed Fusion
,”
Virtual Phys. Prototyp.
,
16
(
3
), pp.
347
371
.
24.
Chen
,
F.
,
Zabalza
,
J.
,
Murray
,
P.
,
Marshall
,
S.
,
Yu
,
J.
, and
Gupta
,
N.
,
2020
, “
Embedded Product Authentication Codes in Additive Manufactured Parts: Imaging and Image Processing for Improved Scan Ability
,”
Addit. Manuf.
,
35
, p.
101319
.
25.
Chhetri
,
S. R.
,
Faezi
,
S.
, and
Al Faruque
,
M. A.
,
2017
, “
Fix the Leak! An Information Leakage Aware Secured Cyber-Physical Manufacturing System
,”
Design, Automation & Test in Europe Conference & Exhibition (DATE)
,
Lausanne, Switzerland
,
Mar. 27–31
, IEEE, pp.
1408
1413
.
26.
Hou
,
J.-U.
,
Kim
,
D.-G.
, and
Lee
,
H.-K.
,
2017
, “
Blind 3D Mesh Watermarking for 3D Printed Model by Analyzing Layering Artifact
,”
IEEE Trans. Inf. Forensics Secur.
,
12
(
11
), pp.
2712
2725
.
27.
Kennedy
,
Z. C.
,
Stephenson
,
D. E.
,
Christ
,
J. F.
,
Pope
,
T. R.
,
Arey
,
B. W.
,
Barrett
,
C. A.
, and
Warner
M. G.
,
2017
, “
Enhanced Anti-Counterfeiting Measures for Additive Manufacturing: Coupling Lanthanide Nanomaterial Chemical Signatures With Blockchain Technology
,”
J. Mater. Chem. C
,
5
(
37
), pp.
9570
9578
.
28.
Chen
,
G. L.
,
Yanamandra
,
K.
, and
Gupta
,
N.
,
2021
, “
Artificial Neural Networks Framework for Detection of Defects in 3D-Printed Fiber Reinforcement Composites
,”
JOM
,
73
(
7
), pp.
2075
2084
.
29.
Arul Prakash
,
S. K.
,
Mahan
,
T.
,
Williams
,
G.
,
McComb
,
C.
,
Menold
,
J.
, and
Tucker
,
C. S.
,
2019
, “
Detection of System Compromise in Additive Manufacturing Using Video Motion Magnification
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031109
.
30.
Li
,
J.
,
Sun
,
J.
,
Qian
,
G.
, and
Shi
,
L.
,
2022
, “
Defect-Induced Cracking and Fine Granular Characteristics in Very-High-Cycle Fatigue of Laser Powder Bed Fusion AlSi10Mg Alloy
,”
Int. J. Fatigue
,
158
, p.
106770
.
31.
Matvieieva
,
N.
,
Neupetsch
,
C.
,
Oettel
,
M.
,
Makdani
,
V.
, and
Drossel
,
W.-G.
,
2020
, “
A Novel Approach for Increasing the Traceability of 3D Printed Medical Products
,”
Curr. Dir. Biomed. Eng.
,
6
(
3
), pp.
315
318
.
32.
Du Plessis
,
A.
,
Yadroitsev
,
I.
,
Yadroitsava
,
I.
, and
Le Roux
,
S. G.
,
2018
, “
X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications
,”
3D Print. Addit. Manuf.
,
5
(
3
), pp.
227
247
.
33.
Lu
,
Q. Y.
, and
Wong
,
C. H.
,
2017
, “
Applications of Non-Destructive Testing Techniques for Post-Process Control of Additively Manufactured Parts
,”
Virtual Phys. Prototyp.
,
12
(
4
), pp.
301
321
.
34.
Segovia Ramírez
,
I.
,
García Márquez
,
F. P.
, and
Papaelias
,
M.
,
2023
, “
Review on Additive Manufacturing and Non-Destructive Testing
,”
J. Manuf. Syst.
,
66
, pp.
260
286
.
35.
Chen
,
F.
,
Mac
,
G.
, and
Gupta
,
N.
,
2017
, “
Security Features Embedded in Computer Aided Design (CAD) Solid Models for Additive Manufacturing
,”
Mater. Des.
,
128
, pp.
182
194
.
36.
Taherkhani
,
K.
,
Ero
,
O.
,
Liravi
,
F.
,
Toorandaz
,
S.
, and
Toyserkani
,
E.
,
2023
, “
On the Application of In-Situ Monitoring Systems and Machine Learning Algorithms for Developing Quality Assurance Platforms in Laser Powder Bed Fusion: A Review
,”
J. Manuf. Process.
,
99
, pp.
848
897
.
37.
Gobert
,
C.
,
Kudzal
,
A.
,
Sietins
,
J.
,
Mock
,
C.
,
Sun
,
J.
, and
McWilliams
,
B.
,
2020
, “
Porosity Segmentation in X-Ray Computed Tomography Scans of Metal Additively Manufactured Specimens With Machine Learning
,”
Addit. Manuf.
,
36
, p.
101460
.
38.
Honarvar
,
F.
, and
Varvani-Farahani
,
A.
,
2020
, “
A Review of Ultrasonic Testing Applications in Additive Manufacturing: Defect Evaluation, Material Characterization, and Process Control
,”
Ultrasonics
,
108
, p.
106227
.
39.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Composites, Part B
,
143
, pp.
172
196
.
40.
Kim
,
H.
,
Lin
,
Y.
, and
Tseng
,
T.-L. B.
,
2018
, “
A Review on Quality Control in Additive Manufacturing
,”
Rapid Prototyp. J.
,
24
(
3
), pp.
645
669
.
41.
Kim
,
F. H.
, and
Moylan
,
S.
,
2018
, Literature Review of Metal Additive Manufacturing Defects, Advanced Manufacturing Series (NIST AMS), National Institute of Standards and Technology, Gaithersburg, MD, [Online],
42.
Chauveau
,
D.
,
2018
, “
Review of NDT and Process Monitoring Techniques Usable to Produce High-Quality Parts by Welding or Additive Manufacturing
,”
Weld. World
,
62
(
5
), pp.
1097
1118
.
43.
Katunin
,
A.
,
Wronkowicz-Katunin
,
A.
, and
Dragan
,
K.
,
2020
, “
Impact Damage Evaluation in Composite Structures Based on Fusion of Results of Ultrasonic Testing and X-ray Computed Tomography
,”
Sensors
,
20
(
7
), p.
1867
.
44.
Jedrychowski
,
M.
,
Garner
,
S.
, and
Izquierdo
,
G.
,
2019
, “
Comparison of X-ray Computed Tomography and Immersion Ultrasonic Nondestructive Testing Techniques in the Case of Qualitative and Quantitative Assessment of Brazing Quality Level
,”
Ninth Conference on Industrial Computed Tomography
,
Padova, Italy
,
Feb. 13–15
.
45.
Yuan
,
T.
,
Wang
,
Y.
,
Xu
,
K.
,
Martin
,
R. R.
, and
Hu
,
S.-M.
,
2019
, “
Two-Layer QR Codes
,”
IEEE Trans. Image Process.
,
28
(
9
), pp.
4413
4428
.
46.
Xie
,
S.
, and
Tan
,
H.-Z.
,
2021
, “
An Anti-Counterfeiting Architecture for Traceability System Based on Modified Two-Level Quick Response Codes
,”
Electronics
,
10
(
3
), p.
320
.
47.
Rogalsky
,
A.
,
Rishmawi
,
I.
,
Brock
,
L.
, and
Vlasea
,
M.
,
2018
, “
Low Cost Irregular Feed Stock for Laser Powder Bed Fusion
,”
J. Manuf. Processes
,
35
, pp.
446
456
.
48.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2017
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
, pp.
103
112
.
49.
McGregor
,
M.
,
Patel
,
S.
,
McLachlin
,
S.
, and
Vlasea
,
M.
,
2021
, “
Architectural Bone Parameters and the Relationship to Titanium Lattice Design for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
47
, p.
102273
.
50.
Zhang
,
J.
,
Patel
,
S.
,
Liu
,
Z.
,
Lyu
,
T.
,
Wang
,
Y.
,
Hua
,
Y.
,
Wang
,
W.
,
Hattrick-Simpers
,
J.
,
Vlasea
,
M.
, and
Zou
,
Y.
,
2024
, “
A Data-Driven Framework to Improve the Wear Resistance of a Low-Alloy Steel Fabricated by Laser Powder Bed Fusion
,”
J. Manuf. Processes
,
115
, pp.
56
67
.
51.
Senyaev
,
A.
,
Smorkalov
,
A.
,
Gregory
,
S.
,
Heinisuo
,
O-.P.
, et al
,
2024
, Opencv-Python: Wrapper Package for OpenCV Python Bindings. C++, Python.[MacOS, Microsoft :: Windows, POSIX, Unix]. https://github.com/opencv/opencv-python
52.
Dalal
,
N.
, and
Triggs
,
B.
,
2005
, “
Histograms of Oriented Gradients for Human Detection
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
,
San Diego, CA
,
June 20–26
, IEEE, pp.
886
893
.
53.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 27–30
, pp.
770
778
.
54.
Breu
,
H.
,
Gil
,
J.
,
Kirkpatrick
,
D.
, and
Werman
,
M.
,
1995
, “
Linear Time Euclidean Distance Transform Algorithms
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
17
(
5
), pp.
529
533
.
55.
Babu
,
J. J.
,
Mehrpouya
,
M.
,
Pijper
,
T. C.
,
Willemsen
,
G.
, and
Vaneker
,
T.
,
2022
, “
An Experimental Study of Downfacing Surfaces in Selective Laser Melting
,”
Adv. Eng. Mater.
,
24
(
8
), p.
2101562
.
56.
Rott
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Casper
,
J.
,
Full
,
M.
, and
Schleifenbaum
,
J. H.
,
2020
, “
Surface Roughness in Laser Powder Bed Fusion—Interdependency of Surface Orientation and Laser Incidence
,”
Addit. Manuf.
,
36
, p.
101437
.
57.
Haines
,
N.
, and
Langston
,
D.
,
1980
, “
The Reflection of Ultrasonic Pulses From Surfaces
,”
J. Acoust. Soc. Am.
,
67
(
5
), pp.
1443
1454
.
58.
Shange
,
M.
,
Yadroitsava
,
I.
,
du Plessis
,
A.
, and
Yadroitsev
,
I.
,
2022
, “
Roughness and Near-Surface Porosity of Unsupported Overhangs Produced by High-Speed Laser Powder Bed Fusion
,”
3D Print. Addit. Manuf.
,
9
(
4
), pp.
288
300
.
59.
Ibhadode
,
O.
,
Rishmawi
,
I. Z.
,
Kirby
,
M.
,
Vlasea
,
M.
, and
Winkler
,
S.
,
2023
, “
Topological Fidelity of Additively Manufactured AlSi10Mg Gyroid Structures
,”
J. Manuf. Processes
,
108
, pp.
671
684
.
60.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Understanding Laser Powder Bed Fusion Surface Roughness
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071003
.
61.
Zhang
,
J.
,
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2012
, “
Effect of Roughness on Imaging and Sizing Rough Crack-Like Defects Using Ultrasonic Arrays
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
59
(
5
), pp.
939
948
.
You do not currently have access to this content.