Abstract

Sn-Ag-Cu (SAC) solder alloy is the most promising lead-free solder alloy, with Sn as the principal constituent. It offers excellent solderability and mechanical properties and addresses the environmental hazards associated with Pb-Sn solders. Key factors affecting the reliability and solderability of the alloy includes wettability, microstructure evolution, intermetallic compound (IMC) growth at the solder-substrate interface, and mechanical properties. The addition of nanoparticles in low weight fractions reduce surface tension, enhances wettability, refines the microstructure, and improves mechanical properties such as shear strength, tensile strength, and microhardness. The improvement in mechanical properties is achieved by inhibiting IMC growth and strengthening the solder matrix. However, excessive nanoparticle additions can adversely affect the properties of solder joints. Despite advancements in lead-free solders, none of the alloys has fully replaced Sn–Pb solders due to challenges in controlling IMC formation during reflow processes. The present work reviews the effects of nanoparticles on the microstructure, mechanical properties, and reliability of SAC solder alloys. The ongoing research on nanocomposite solders should focus on optimizing nanoparticle additions to enhance reliability under thermal cycling and aging conditions.

References

1.
Magnien
J.
,
Khatibi
G.
,
Lederer
M.
, and
Ipser
H.
, “
Investigation of Interfacial Behavior in Miniaturized Solder Interconnects
,”
Materials Science and Engineering: A
673
(September
2016
):
541
550
, https://doi.org/10.1016/j.msea.2016.07.060
2.
Dong
M.-J.
,
Gao
Z.-M.
,
Liu
Y.-C.
,
Wang
X.
, and
Yu
L.-M.
, “
Effect of Indium Addition on the Microstructural Formation and Soldered Interfaces of Sn-2.5Bi-1Zn-0.3Ag Lead-Free Solder
,”
International Journal of Minerals, Metallurgy, and Materials
19
, no. 
11
(November
2012
):
1029
1035
, https://doi.org/10.1007/s12613-012-0665-4
3.
Dong
G.
,
Tan
S.
,
Han
J.
,
Wang
Y.
,
Guo
F.
, and
Ma
L.
, “
Study on Slip Behavior of Lead-Free Solder Joints under Uniaxial Stress
,” in
Proceedings of the 18th International Conference on Electronic Packaging Technology
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2017
),
1043
1045
, https://doi.org/10.1109/ICEPT.2017.8046621
4.
Shnawah
D. A.
,
Sabri
M. F. M.
,
Badruddin
I. A.
,
Said
S. B. M.
,
Ariga
T.
, and
Che
F. X.
, “
Effect of Ag Content and the Minor Alloying Element Fe on the Mechanical Properties and Microstructural Stability of Sn-Ag-Cu Solder Alloy under High-Temperature Annealing
,”
Journal of Electronic Materials
42
, no. 
3
(March
2013
):
470
484
, https://doi.org/10.1007/s11664-012-2343-8
5.
Liu
X.
,
Huang
M.
,
Zhao
N.
, and
Wang
L.
, “
Liquid-State and Solid-State Interfacial Reactions between Sn–Ag–Cu–Fe Composite Solders and Cu Substrate
,”
Journal of Materials Science: Materials in Electronics
25
, no. 
1
(January
2014
):
328
337
, https://doi.org/10.1007/s10854-013-1590-7
6.
Liu
Y.
and
Tu
K. N.
, “
Low Melting Point Solders Based on Sn, Bi, and In Elements
,”
Materials Today: Advances
8
(
2020
): 100115, https://doi.org/10.1016/j.mtadv.2020.100115
7.
Zhang
L.
and
Tu
K. N.
, “
Structure and Properties of Lead-Free Solders Bearing Micro and Nano Particles
,”
Materials Science and Engineering: R: Reports
82
(August
2014
):
1
32
, https://doi.org/10.1016/j.mser.2014.06.001
8.
Sujan
G. K.
,
Haseeb
A. S. M. A.
, and
Afifi
A. B. M.
, “
Effects of Metallic Nanoparticle Doped Flux on the Interfacial Intermetallic Compounds between Lead-Free Solder Ball and Copper Substrate
,”
Materials Characterization
97
(November
2014
):
199
209
, https://doi.org/10.1016/j.matchar.2014.10.002
9.
Hwang
J.
,
Implementing Lead-Free Electronics
(
New York
:
McGraw-Hill
,
2004
).
10.
Kariya
Y.
,
Hosoi
T.
,
Kimura
T.
,
Terashima
S.
,
Tanaka
M.
, and
Suga
T.
, “
Fatigue Life Enhancement of Low Silver Content Sn-Ag-Cu Flip-Chip Interconnects by Ni Addition
,” in
Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, vol. 2
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2004
),
103
108
, https://doi.org/10.1109/itherm.2004.1318264
11.
Zhao
X.
,
Wen
Y.
,
Li
Y.
,
Liu
Y.
, and
Wang
Y.
, “
Effect of γ-Fe2O3 Nanoparticles Size on the Properties of Sn-1.0Ag-0.5Cu Nano-composite Solders and Joints
,”
Journal of Alloys and Compounds
662
(March
2016
):
272
282
, https://doi.org/10.1016/j.jallcom.2015.11.213
12.
Kotadia
H. R.
,
Howes
P. D.
, and
Mannan
S. H.
, “
A Review: On the Development of Low Melting Temperature Pb-Free Solders
,”
Microelectronics and Reliability
54
, nos. 
6–7
(June–July
2014
):
1253
1273
, https://doi.org/10.1016/j.microrel.2014.02.025
13.
Li
J. F.
,
Agyakwa
P. A.
, and
Johnson
C. M.
, “
Suitable Thicknesses of Base Metal and Interlayer, and Evolution of Phases for Ag/Sn/Ag Transient Liquid-Phase Joints Used for Power Die Attachment
,”
Journal of Electronic Materials
43
, no. 
4
(April
2014
):
983
995
, https://doi.org/10.1007/s11664-013-2971-7
14.
Bharath Krupa Teja
M.
,
Sharma
A.
,
Das
S.
, and
Das
K.
, “
A Review on Nanodispersed Lead-Free Solders in Electronics: Synthesis, Microstructure and Intermetallic Growth Characteristics
,”
Journal of Materials Science
57
, no. 
19
(May
2022
):
8597
8633
, https://doi.org/10.1007/s10853-022-07187-8
15.
Li
M.-L.
,
Zhang
L.
,
Jiang
N.
,
Zhang
L.
, and
Zhong
S.-J.
, “
Materials Modification of the Lead-Free Solders Incorporated with Micro/Nano-sized Particles: A Review
,”
Materials & Design
197
(January
2021
): 109224, https://doi.org/10.1016/j.matdes.2020.109224
16.
Mallik
M.
,
Das
K.
,
Ghosh
R. N.
, and
Das
S.
, “
Effect of Cetyl Trimethyl Ammonium Bromide (CTAB) Amount on the Nanoindentation Creep Behaviour of Sn-cu-Y2O3 Nanocomposite Lead-Free Solder
,”
Materials Characterization
212
(June
2024
): 113989, https://doi.org/10.1016/j.matchar.2024.113989
17.
Tikale
S.
and
Prabhu
K. N.
, “
Bond Shear Strength of Al2O3 Nanoparticles Reinforced 2220-Capacitor/SAC305 Solder Interconnects Reflowed on Bare and Ni-Coated Copper Substrate
,”
Journal of Materials Science: Materials in Electronics
32
, no. 
3
(February
2021
):
2865
2886
, https://doi.org/10.1007/s10854-020-05040-9
18.
Wen
Y.
,
Zhao
X.
,
Chen
Z.
,
Gu
Y.
,
Wang
Y.
,
Chen
Z.
, and
Wang
X.
, “
Reliability Enhancement of Sn-1.0Ag-0.5Cu Nano-composite Solders by Adding Multiple Sizes of TiO2 Nanoparticles
,”
Journal of Alloys and Compounds
696
(March
2017
):
799
807
, https://doi.org/10.1016/j.jallcom.2016.12.037
19.
Dele-Afolabi
T. T.
,
Ansari
M. N. M.
,
Azmah Hanim
M. A.
,
Oyekanmi
A. A.
,
Ojo-Kupoluyi
O. J.
, and
Atiqah
A.
, “
Recent Advances in Sn-Based Lead-Free Solder Interconnects for Microelectronics Packaging: Materials and Technologies
,”
Journal of Materials Research and Technology
25
(July–August
2023
):
4231
4263
, https://doi.org/10.1016/j.jmrt.2023.06.193
20.
Satyanarayan
and
Prabhu
K. N.
, “
Effect of Temperature and Substrate Surface Texture on Wettability and Morphology of IMCs between Sn–0.7Cu Solder Alloy and Copper Substrate
,”
Journal of Materials Science: Materials in Electronics
23
, no. 
9
(September
2012
):
1664
1672
, https://doi.org/10.1007/s10854-012-0644-6
21.
Tikale
S.
and
Prabhu
K. N.
, “
Performance of MWCNT-Reinforced SAC0307/Cu Solder Joint under Multiple Reflow Cycles
,”
Transactions of the Indian Institute of Metals
71
, no. 
11
(November
2018
):
2693
2698
, https://doi.org/10.1007/s12666-018-1431-8
22.
Qu
M.
,
Gao
Z.
,
Chen
J.
, and
Cui
Y.
, “
Effect of Ni-Coated Carbon Nanotubes Addition on the Wettability, Microhardness, and Shear Strength of Sn-3.0Ag-0.5Cu/Cu Lead-Free Solder Joints
,”
Journal of Materials Science: Materials in Electronics
33
, no. 
14
(May
2022
):
10866
10879
, https://doi.org/10.1007/s10854-022-08067-2
23.
Tikale
S.
and
Prabhu
K. N.
, “
Effect of Multiple Reflow Cycles and Al2O3 Nanoparticles Reinforcement on Performance of SAC305 Lead-Free Solder Alloy
,”
Journal of Materials Engineering and Performance
27
, no. 
6
(June
2018
):
3102
3111
, https://doi.org/10.1007/s11665-018-3390-y
24.
Chen
G.
,
Huang
B.
,
Liu
H.
,
Chan
Y. C.
,
Tang
Z.
, and
Wu
F.
, “
An Investigation of Microstructure and Properties of Sn3.0Ag0.5Cu-XAl2O3 Composite Solder
,”
Soldering & Surface Mount Technology
28
, no. 
2
(April
2016
):
84
92
, https://doi.org/10.1108/SSMT-08-2015-0027
25.
Huang
B.
,
Chen
G.
,
Wu
F.
,
Xia
W.
,
Mo
L.
, and
Liu
H.
, “
Preparation, Microstructure and Properties of Sn-Ag-Cu Solder Reinforced with Al2O3 Nanoparticles
,” in
Proceedings of the 15th International Conference on Electronic Packaging Technology
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2015
),
243
246
, https://doi.org/10.1109/ICEPT.2014.6922646
26.
Wu
J.
,
Xue
S.
,
Wang
J.
,
Wu
M.
, and
Wang
J.
, “
Effects of α-Al2O3 Nanoparticles-Doped on Microstructure and Properties of Sn–0.3Ag–0.7Cu Low-Ag Solder
,”
Journal of Materials Science: Materials in Electronics
29
, no. 
9
(May
2018
):
7372
7387
, https://doi.org/10.1007/s10854-018-8727-7
27.
Sharma
A.
,
Baek
B. G.
, and
Jung
J. P.
, “
Influence of La2O3 Nanoparticle Additions on Microstructure, Wetting, and Tensile Characteristics of Sn–Ag–Cu Alloy
,”
Materials & Design
87
(December
2015
):
370
379
, https://doi.org/10.1016/j.matdes.2015.07.137
28.
Rajendran
S. H.
,
Seo
S. M.
, and
Jung
J. P.
, “
Effect of 0D and 1D ZnO Nano Additive Reinforced Sn-3.0Ag-0.5Cu Solder Paste on InGaN LED Chip/ENIG Joints
,”
Materials Today: Communications
35
(
2023
): 105795, https://doi.org/10.1016/j.mtcomm.2023.105795
29.
Jung
D.-H.
,
Sharma
A.
, and
Jung
J.-P.
, “
Influence of Dual Ceramic Nanomaterials on the Solderability and Interfacial Reactions between Lead-Free Sn-Ag-Cu and a Cu Conductor
,”
Journal of Alloys and Compounds
743
(April
2018
):
300
313
, https://doi.org/10.1016/j.jallcom.2018.02.017
30.
Sharma
A.
,
Yu
H.
,
Cho
I. S.
,
Seo
H.
, and
Ahn
B.
, “
ZrO2 Nanoparticle Embedded Low Silver Lead Free Solder Alloy for Modern Electronic Devices
,”
Electronic Materials Letters
15
, no. 
1
(January
2019
):
27
35
, https://doi.org/10.1007/s13391-018-0089-z
31.
Yin
L.
,
Zhang
Z.
,
Su
Z.
,
Zhang
H.
,
Zuo
C.
,
Yao
Z.
,
Wang
G.
,
Zhang
L.
, and
Zhang
Y.
, “
Interfacial Microstructure Evolution and Properties of Sn-0.3Ag-0.7Cu–xSiC Solder Joints
,”
Materials Science and Engineering: A
809
(March
2021
): 140995, https://doi.org/10.1016/j.msea.2021.140995
32.
Sun
L.
,
Zhang
L.
,
Zhang
Y.
,
Xu
Y.-X.
,
Zhang
P.-X.
,
Liu
Q.-H.
, and
Shan
H.-J.
, “
Interfacial Reaction and Properties of Sn0.3Ag0.7Cu Containing Nano-TiN Solder Joints
,”
Journal of Materials Science: Materials in Electronics
33
, no. 
6
(February
2022
):
3320
3330
, https://doi.org/10.1007/s10854-021-07532-8
33.
Muzni
N. H. M.
,
Noor
E. E. M.
,
Abdullah
M. M. A.-B.
, and
Aksoy
C.
, “
Effects of TiO2 and Al2O3 Nanoparticles Addition on the Thermal Properties and Wettability of Sn-3.0Ag-0.5Cu-xTiO2-xAl2O3
,”
Journal of Physics: Conference Series
2169
, no. 
1
(
2022
): 012003, https://doi.org/10.1088/1742-6596/2169/1/012003
34.
Chen
G.
,
Wu
F.
,
Liu
C.
,
Xia
W.
, and
Liu
H.
, “
Effects of Fullerenes Reinforcement on the Performance of 96.5Sn–3Ag–0.5Cu Lead-Free Solder
,”
Materials Science and Engineering: A
636
(June
2015
):
484
492
, https://doi.org/10.1016/j.msea.2015.03.106
35.
Tikale
S.
and
Prabhu
K. N.
, “
Performance and Reliability of Al2O3 Nanoparticles Doped Multicomponent Sn-3.0Ag-0.5Cu-Ni-Ge Solder Alloy
,”
Microelectronics and Reliability
113
(October
2020
): 113933, https://doi.org/10.1016/j.microrel.2020.113933
36.
Haseeb
A. S. M. A.
,
Arafat
M. M.
,
Tay
S. L.
, and
Leong
Y. M.
, “
Effects of Metallic Nanoparticles on Interfacial Intermetallic Compounds in Tin-Based Solders for Microelectronic Packaging
,”
Journal of Electronic Materials
46
, no. 
10
(October
2017
):
5503
5518
, https://doi.org/10.1007/s11664-017-5591-9
37.
Sun
L.
,
Zhang
L.
,
Xu
L.
,
Zhong
S.-J.
,
Ma
J.
, and
Bao
L.
, “
Effect of Nano-Al Addition on Properties and Microstructure of Low-Ag Content Sn–1Ag–0.5Cu Solders
,”
Journal of Materials Science: Materials in Electronics
27
, no. 
7
(July
2016
):
7665
7673
, https://doi.org/10.1007/s10854-016-4751-7
38.
Chan
Y. H.
,
Arafat
M. M.
, and
Haseeb
A. S. M. A.
, “
Effects of Reflow on the Interfacial Characteristics between Zn Nanoparticles Containing Sn‐3.8Ag‐0.7Cu Solder and Copper Substrate
,”
Soldering & Surface Mount Technology
25
, no. 
2
(April
2013
):
91
98
, https://doi.org/10.1108/09540911311309040
39.
Hu
X.
,
Li
Y.
,
Liu
Y.
,
Liu
Y.
, and
Min
Z.
, “
Microstructure and Shear Strength of Sn37Pb/Cu Solder Joints subjected to Isothermal Aging
,”
Microelectronics and Reliability
54
, no. 
8
(August
2014
):
1575
1582
, https://doi.org/10.1016/j.microrel.2014.04.003
40.
Hu
X.
,
Xu
T.
,
Keer
L. M.
,
Li
Y.
, and
Jiang
X.
, “
Microstructure Evolution and Shear Fracture Behavior of Aged Sn3Ag0.5Cu/Cu Solder Joints
,”
Materials Science and Engineering: A
673
(September
2016
):
167
177
, https://doi.org/10.1016/j.msea.2016.07.071
41.
Wu
C.-J.
,
Zhang
L.
,
Chen
C.
, and
Lu
X.
, “
Thermal, Microstructural, Wettability and Mechanical Properties of Sn1.0Ag0.5Cu Composite Solder Modified with Ti Nanoparticles
,”
Materials Characterization
212
(June
2024
): 113927, https://doi.org/10.1016/j.matchar.2024.113927
42.
Yuan
P.
,
Chen
D.
,
Qin
J.
,
Bai
H.
,
Zhang
X.
,
Gan
G.
,
Leng
C.
, and
Yan
J.
, “
Effects of Ag3Sn Nanoparticles and Isothermal Aging on IMC Layer Growth, Mechanical Properties, and Life Prediction of SAC305/Cu Solder Joints
,”
Composites and Advanced Materials
32
(
2023
): 26349833231163598, https://doi.org/10.1177/26349833231163598
43.
Chuang
T. H.
,
Wu
M. W.
,
Chang
S. Y.
,
Ping
S. F.
, and
Tsao
L. C.
, “
Strengthening Mechanism of Nano-Al2O3 Particles Reinforced Sn3.5Ag0.5Cu Lead-Free Solder
,”
Journal of Materials Science: Materials in Electronics
22
, no. 
8
(August
2011
):
1021
1027
, https://doi.org/10.1007/s10854-010-0253-1
44.
Wu
J.
,
Xue
S.
,
Huang
G.
,
Sun
H.
,
Chi
F.
,
Yang
X.
, and
Xu
Y.
, “
In-Situ Synergistic Effect of Pr and Al2O3 Nanoparticles on Enhancing Thermal Cycling Reliability of Sn-0.3Ag-0.7Cu/Cu Solder Joint
,”
Journal of Alloys and Compounds
905
(June
2022
): 164152, https://doi.org/10.1016/j.jallcom.2022.164152
45.
Yang
L.
,
Quan
S.
,
Liu
C.
, and
Shi
G.
, “
Aging Resistance of the Sn-Ag-Cu Solder Joints Doped with Mo Nanoparticles
,”
Materials Letters
253
(October
2019
):
191
194
, https://doi.org/10.1016/j.matlet.2019.06.068
46.
Wu
J.
,
Huang
G.
,
Wu
Y.
,
Huang
X.
,
Yu
R.
,
Yang
X.
,
Chen
G.
, and
Xu
Y.
, “
Insights into Relationship between Mechanical Behavior and Microstructure Evolution of Sn-1.0Ag-0.5Cu-GNSs/Cu Joint during Thermal Cycling
,”
Journal of Materials Science: Materials in Electronics
34
, no. 
2
(January
2023
): 86, https://doi.org/10.1007/s10854-022-09488-9
47.
Tikale
S.
and
Prabhu
K. N.
, “
Development of Low-Silver Content SAC0307 Solder Alloy with Al2O3 Nanoparticles
,”
Materials Science and Engineering: A
787
(June
2020
): 139439, https://doi.org/10.1016/j.msea.2020.139439
48.
Li
Z. H.
,
Tang
Y.
,
Guo
Q. W.
, and
Li
G. Y.
, “
Effects of CeO2 Nanoparticles Addition on Shear Properties of Low-Silver Sn–0.3Ag–0.7Cu-xCeO2 Solder Alloys
,”
Journal of Alloys and Compounds
789
(June
2019
):
150
162
, https://doi.org/10.1016/j.jallcom.2019.03.013
49.
Yakymovych
A.
,
Plevachuk
Y.
,
Švec
,
P.
 Sr.
,
Švec
P.
,
Janičkovič
D.
,
Šebo
P.
,
Beronská
N.
,
Roshanghias
A.
, and
Ipser
H.
, “
Morphology and Shear Strength of Lead-Free Solder Joints with Sn3.0Ag0.5Cu Solder Paste Reinforced with Ceramic Nanoparticles
,”
Journal of Electronic Materials
45
, no. 
12
(December
2016
):
6143
6149
, https://doi.org/10.1007/s11664-016-4832-7
50.
Yakymovych
A.
,
Plevachuk
Y.
,
Švec
P.
 Sr.
,
Janičkovič
D.
,
Šebo
P.
,
Beronská
N.
,
Nosko
M.
,
Orovcik
L.
,
Roshanghias
A.
, and
Ipser
H.
, “
Nanocomposite SAC Solders: Morphology, Electrical and Mechanical Properties of Sn–3.8Ag–0.7Cu Solders by Adding Co Nanoparticles
,”
Journal of Materials: Science Materials in Electronics
28
, no. 
15
(August
2017
):
10965
10973
, https://doi.org/10.1007/s10854-017-6877-7
51.
Lall
P.
,
Bhat
C.
,
Hande
M.
,
More
V.
,
Vaidya
R.
, and
Goebel
K.
, “
Prognostication of Residual Life and Latent Damage Assessment in Lead-Free Electronics under Thermomechanical Loads
,”
IEEE Transactions on Industrial Electronics
58
, no. 
7
(July
2011
):
2605
2616
, https://doi.org/10.1109/TIE.2010.2089936
52.
Gu
Y.
,
Liu
Y.
,
Zhao
X. C.
,
Wen
S. L.
,
Li
H.
, and
Wang
Y.
, “
Effects of Cobalt Nanoparticles Addition on Shear Strength, Wettability and Interfacial Intermetallic Growth of Sn−3.0Ag−0.5Cu Solder during Thermal Cycling
,”
Materials Science Forum
815
(
2015
):
97
102
, https://doi.org/10.4028/www.scientific.net/MSF.815.97
53.
Cheng
S.
,
Huang
C.-M.
, and
Pecht
M.
, “
A Review of Lead-Free Solders for Electronics Applications
,”
Microelectronics Reliability
75
(August
2017
):
77
95
, https://doi.org/10.1016/j.microrel.2017.06.016
54.
Száraz
Z.
,
Trojanová
Z.
,
Cabbibo
M.
, and
Evangelista
E.
, “
Strengthening in a WE54 Magnesium Alloy Containing SiC Particles
,”
Materials Science and Engineering: A
462
, nos. 
1–2
(July
2007
):
225
229
, https://doi.org/10.1016/j.msea.2006.01.182
55.
Al-sorory
H.
,
Gumaan
M. S.
, and
Shalaby
R. M.
, “
Effect of Al2O3 Nanoparticle Addition on the Microstructure, Mechanical, Thermal, and Electrical Properties of Melt-Spun SAC355 Lead-Free Solder for Electronic Packaging
,”
Journal of Materials Engineering and Performance
32
, no. 
19
(October
2023
):
8600
8611
, https://doi.org/10.1007/s11665-022-07752-x
56.
Che Ani
F.
,
Jalar
A.
,
Saad
A. A.
,
Khor
C. Y.
,
Ismail
R.
,
Bachok
Z.
,
Abas
M. A.
, and
Othman
N. K.
, “
The Influence of Fe2O3 Nano-reinforced SAC Lead-Free Solder in the Ultra-fine Electronics Assembly
,”
International Journal of Advanced Manufacturing Technology
96
, no. 
1–4
(April
2018
):
717
733
, https://doi.org/10.1007/s00170-018-1583-z
57.
Chellvarajoo
S.
,
Abdullah
M. Z.
, and
Samsudin
Z.
, “
Effects of Fe2NiO4 Nanoparticles Addition into Lead Free Sn–3.0Ag–0.5Cu Solder Pastes on Microstructure and Mechanical Properties after Reflow Soldering Process
,”
Materials & Design
67
(February
2015
):
197
208
, https://doi.org/10.1016/j.matdes.2014.11.025
58.
Chellvarajoo
S.
,
Abdullah
M. Z.
, and
Khor
C. Y.
, “
Effects of Diamond Nanoparticles Reinforcement into Lead-Free Sn-3.0Ag-0.5Cu Solder Pastes on Microstructure and Mechanical Properties after Reflow Soldering Process
,”
Materials & Design
82
(October
2015
):
206
215
, https://doi.org/10.1016/j.matdes.2015.05.065
59.
Insider
Markets
, “
Commodities: Metals
,”
Insider
,
2024
, http://web.archive.org/web/20240920113713/https://markets.businessinsider.com/
60.
Chemie
Otto
, “
Laboratory Chemicals
,”
Otto Chemie
,
2024
, http://web.archive.org/web/20241001033801/https://www.ottokemi.com/
61.
He
J.
,
Ling
Y.
, and
Lei
D.
, “
Mechanical Properties of Sn–Pb Based Solder Joints and Fatigue Life Prediction of PBGA Package Structure
,”
Ceramics International
49
, no. 
16
(August
2023
):
27445
27456
, https://doi.org/10.1016/j.ceramint.2023.06.017
62.
Sharma
A.
,
Lee
H.
, and
Ahn
B.
, “
Tailoring Compressive Strength and Absorption Energy of Lightweight Multi-phase AlCuSiFeX (X = Cr, Mn, Zn, Sn) High-Entropy Alloys Processed via Powder Metallurgy
,”
Materials
14
, no. 
17
(September
2021
): 4945, https://doi.org/10.3390/ma14174945
63.
Rajendran
S. H.
,
Jung
D. H.
, and
Jung
J. P.
, “
Investigating the Physical, Mechanical, and Reliability Study of High Entropy Alloy Reinforced Sn–3.0Ag–0.5Cu Solder Using 1608 Chip Capacitor/ENIG Joints
,”
Journal of Materials Science: Materials in Electronics
33
, no. 
7
(March
2022
):
3687
3710
, https://doi.org/10.1007/s10854-021-07562-2
64.
Liu
Y.
,
Pu
L.
,
Yang
Y.
,
He
Q.
,
Zhou
Z.
,
Tan
C.
,
Zhao
X.
,
Zhang
Q.
, and
Tu
K. N.
, “
A High-Entropy Alloy as Very Low Melting Point Solder for Advanced Electronic Packaging
,”
Materials Today: Advances
7
(
2020
): 100101, https://doi.org/10.1016/j.mtadv.2020.100101
65.
Chae
M. J.
,
Sharma
A.
,
Oh
M. C.
, and
Ahn
B.
, “
Lightweight AlCuFeMnMgTi High Entropy Alloy with High Strength-to-Density Ratio Processed by Powder Metallurgy
,”
Metals and Materials International
27
, no. 
4
(April
2021
):
629
638
, https://doi.org/10.1007/s12540-020-00823-5
66.
Sharma
A.
,
Oh
M. C.
, and
Ahn
B.
, “
Microstructural Evolution and Mechanical Properties of Non-Cantor AlCuSiZnFe Lightweight High Entropy Alloy Processed by Advanced Powder Metallurgy
,”
Materials Science and Engineering: A
797
(October
2020
): 140066, https://doi.org/10.1016/j.msea.2020.140066
67.
Sharma
B.
,
Kumar
M.
,
Kumar
V.
, and
Sharma
A.
, “
Boron Nitride Nanotubes Modified on a Lead-Free Solder Alloy for Microelectromechanical Packaging
,”
ACS Applied Nano Materials
5
, no. 
9
(September
2022
):
13626
13636
, https://doi.org/10.1021/acsanm.2c03382
68.
Lu
X.
,
Zhang
L.
,
Chen
C.
, and
Wang
X.
, “
Microstructure and Orientation Evolution of β-Sn and Interfacial Cu6Sn5 IMC Grains in SAC105 Solder Joints Modified by Si3N4 Nanowires
,”
Journal of Materials Research and Technology
26
(September–October
2023
):
4723
4738
, https://doi.org/10.1016/j.jmrt.2023.08.186
69.
Lu
X.
,
Zhang
L.
,
Guo
Y.-H.
,
Wang
X.
,
Li
M.-L.
,
Chen
C.
,
Gao
L.-L.
, and
Zhao
M.
, “
Microstructure Evolution and Thermal, Wetting, Mechanical Properties of SiC Nanowires Reinforced SAC105 Composite Solder
,”
Intermetallics
154
(March
2023
): 107816, https://doi.org/10.1016/j.intermet.2022.107816
70.
Tamizi
M.
,
Movahedi
M.
,
Kokabi
A. H.
,
Miyashita
Y.
, and
Azghandi Rad
S.
, “
Wettability and Rheological Behavior of Low Ag Lead-Free SAC/Graphene and Cobalt-Graphene Nanocomposite Solder Paste
,”
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
53
, no. 
8
(August
2022
):
2811
2822
, https://doi.org/10.1007/s11661-022-06707-0
71.
Zhao
L.
,
Bai
H.
,
Gu
X.
,
Liang
H.
,
Yang
H.
, and
Yan
J.
, “
The Influences of Ag Nanoparticles on Voids Growth and Solderability about Sn3.0Ag0.5Cu/Cu Solder Joint
,”
Materials Research Express
11
, no. 
5
(May
2024
): 056502, https://doi.org/10.1088/2053-1591/ad4197
72.
Mehrabi
K.
,
Khodabakhshi
F.
,
Zareh
E.
,
Shahbazkhan
A.
, and
Simchi
A.
, “
Effect of Alumina Nanoparticles on the Microstructure and Mechanical Durability of Meltspun Lead-Free Solders Based on Tin Alloys
,”
Journal of Alloys and Compounds
688
, Part A (December
2016
):
143
155
, https://doi.org/10.1016/j.jallcom.2016.06.296
73.
Chellvarajoo
S.
and
Abdullah
M. Z.
, “
Microstructure and Mechanical Properties of Pb-free Sn-3.0Ag-0.5Cu Solder Pastes Added with NiO Nanoparticles after Reflow Soldering Process
,”
Materials & Design
90
(January
2016
):
499
507
, https://doi.org/10.1016/j.matdes.2015.10.142
74.
Xu
L.
,
Chen
X.
,
Jing
H.
,
Wang
L.
,
Wei
J.
, and
Han
Y.
, “
Design and Performance of Ag Nanoparticle-Modified Graphene/SnAgCu Lead-Free Solders
,”
Materials Science and Engineering: A
667
(June
2016
):
87
96
, https://doi.org/10.1016/j.msea.2016.04.084
75.
Chen
S.
,
Tian
R.
,
Wen
J.
, and
Tian
Y.
, “
Reliability Improvement of SnAgCu Interconnections under Extreme Temperature Condition by TiO2 Nanoparticles Doping: Experiments and First Principles Calculations
,”
Materials Characterization
207
(January
2024
): 113492, https://doi.org/10.1016/j.matchar.2023.113492
76.
Al-sorory
H.
,
Gumaan
M. S.
, and
Shalaby
R. M.
, “
Effect of TiO2 Nanoparticles on the Microstructure, Mechanical and Thermal Properties of Rapid Quenching SAC355 Lead-Free Solder Alloy
,”
Soldering & Surface Mount Technology
35
, no. 
1
(January
2023
):
18
27
, https://doi.org/10.1108/SSMT-01-2022-0003
77.
Skwarek
A.
,
Illés
B.
,
Górecki
P.
,
Pietruszka
A.
,
Tarasiuk
J.
, and
Hurtony
T.
, “
Influence of SiC Reinforcement on Microstructural and Thermal Properties of SAC0307 Solder Joints
,”
Journal of Materials Research and Technology
22
(January–February
2023
):
403
412
, https://doi.org/10.1016/j.jmrt.2022.11.126
78.
Tay
S. L.
,
Haseeb
A. S. M. A.
,
Johan
M. R.
,
Munroe
P. R.
, and
Quadir
M. Z.
, “
Influence of Ni Nanoparticle on the Morphology and Growth of Interfacial Intermetallic Compounds between Sn–3.8Ag–0.7Cu Lead-Free Solder and Copper Substrate
,”
Intermetallics
33
(February
2013
):
8
15
, https://doi.org/10.1016/j.intermet.2012.09.016
79.
Arafat
M. M.
,
Haseeb
A. S. M. A.
, and
Rafie Johan
M.
, “
Interfacial Reaction and Dissolution Behavior of Cu Substrate in Molten Sn‐3.8Ag‐0.7Cu in the Presence of Mo Nanoparticles
,”
Soldering & Surface Mount Technology
23
, no. 
3
(June
2011
):
140
149
, https://doi.org/10.1108/09540911111146890
80.
Ma
S.
,
Yang
L.
,
Yang
J.
, and
Liang
Y.
, “
Improved Microstructure and Strength of Sn-Ag-Cu/Cu Solder Joint with Mo Nanoparticles Addition
,”
Materials Letters
356
(February
2024
): 135597, https://doi.org/10.1016/j.matlet.2023.135597
81.
Wang
H.
,
Hu
X.
,
Li
Q.
, and
Qu
M.
, “
Effect of Flux Doped with Cu6Sn5 Nanoparticles on the Interfacial Reaction of Lead-Free Solder Joints
,”
Journal of Materials Science: Materials in Electronics
30
, no. 
12
(June
2019
):
11552
11562
, https://doi.org/10.1007/s10854-019-01512-9
82.
Illés
B.
,
Choi
H.
,
Szostak
K.
,
Byun
J.
, and
Skwarek
A.
, “
Effects of CuO Nanoparticles on SAC Composite Solder Joints: Microstructural and DFT Study
,”
Journal of Materials Research and Technology
32
(September–October
2024
):
609
620
, https://doi.org/10.1016/j.jmrt.2024.07.179
83.
Yang
L. M.
and
Zhang
Z. F.
, “
Effect of Y2O3 Nanoparticles Addition on the Microstructure and Tensile Strength of Cu/Sn3.0Ag0.5Cu Solder Joint
,”
Journal of Applied Physics
117
, no. 
1
(January
2015
): 015308, https://doi.org/10.1063/1.4905587
84.
Wang
H.
,
Zhang
K.
, and
Zhang
M.
, “
Fabrication and Properties of Ni-Modified Graphene Nanosheets Reinforced Sn-Ag-Cu Composite Solder
,”
Journal of Alloys and Compounds
781
(April
2019
):
761
772
, https://doi.org/10.1016/j.jallcom.2018.12.080
85.
Chen
G.
,
Peng
H.
,
Silberschmidt
V. V.
,
Chan
Y. C.
,
Liu
C.
, and
Wu
F.
, “
Performance of Sn-3.0Ag-0.5Cu Composite Solder with TiC Reinforcement: Physical Properties, Solderability and Microstructural Evolution under Isothermal Ageing
,”
Journal of Alloys and Compounds
685
(November
2016
):
680
689
, https://doi.org/10.1016/j.jallcom.2016.05.245
86.
Al-sorory
H.
,
Gumaan
M. S.
, and
Shalaby
R. M.
, “
ZnO Nanoparticles and Compositional Dependence of Structural, Thermal, Mechanical, and Electrical Properties for Eutectic SAC355 Lead-Free Solder Alloys
,”
Results in Materials
15
(September
2022
): 100285, https://doi.org/10.1016/j.rinma.2022.100285
87.
Vidyatharran
K.
,
Azmah Hanim
M. A.
,
Dele-Afolabi
T. T.
,
Matori
K. A.
, and
Saliza Azlina
O.
, “
Microstructural and Shear Strength Properties of GNSs-Reinforced Sn-1.0Ag-0.5Cu (SAC105) Composite Solder Interconnects on Plain Cu and ENIAg Surface Finish
,”
Journal of Materials Research and Technology
15
(November–December
2021
):
2497
2506
, https://doi.org/10.1016/j.jmrt.2021.09.067
88.
Tang
Y.
,
Luo
S. M.
,
Huang
W. F.
,
Pan
Y. C.
, and
Li
G. Y.
, “
Effects of Mn Nanoparticles on Tensile Properties of Low-Ag Sn-0.3Ag-0.7Cu-xMn Solder Alloys and Joints
,”
Journal of Alloys and Compounds
719
(September
2017
):
365
375
, https://doi.org/10.1016/j.jallcom.2017.05.182
This content is only available via PDF.
You do not currently have access to this content.