The effect of elastic accommodation on the grain boundary diffusion-controlled void growth was analyzed using an axisymmetric unit cell model. An incremental form of the virtual work principle was used to formulate the boundary value problem involving grain boundary diffusion. The model accounts for material elasticity and void interaction effects. Analyses are performed for initially spherical voids spaced periodically along the grain boundary. The results of the analyses on void growth rates agree well with the Hull-Rimmer model after the initial transient time. During the elastic transient, void growth rates can be several orders of magnitude higher than the steady state growth rate. Though the elastic transient time may occupy a small portion of the total rupture time, in metallic components experiencing cyclic loading conditions with short hold times, elasticity effects may be important. [S0094-4289(00)00903-8]

1.
Evans, H. E., 1984, Mechanisms of Creep Rupture, Elsevier Applied Science, London.
2.
Riedel, H., 1987, Fracture at High Temperatures, Springer-Verlag, New York.
3.
Hull
,
D.
, and
Rimmer
,
D. E.
,
1959
, “
The Growth of Grain Boundary Voids Under Stress
,”
Philos. Mag.
,
4
, pp.
673
687
.
4.
Speight
,
M. V.
, and
Harris
,
J. E.
,
1967
, “
The Kinetics of Stress-Induced Growth of Grain Boundary Voids
,”
Met. Sci.
,
1
, pp.
83
85
.
5.
Raj
,
R.
, and
Ashby
,
M. F.
,
1975
, “
Intergranular Fracture at Elevated Temperature
,”
Acta Metall. Mater.
,
23
, pp.
653
666
.
6.
Weertman
,
J.
,
1974
, “
Theory of High Temperature Intercrystalline Fracture Under Static or Fatigue Load
,”
Metall. Trans.
,
5
, pp.
1743
1751
.
7.
Raj
,
R.
,
Shih
,
H. M.
, and
Johnson
,
H. H.
,
1977
, “
Correction to ‘Intergranular Fracture at Elevated Temperature,’
Scr. Metall. Mater.
,
11
, pp.
839
842
.
8.
Chaung
,
T.-J.
,
Kagawa
,
K. I.
,
Rice
,
J. R.
, and
Sills
,
L. B.
,
1979
, “
Non-equilibrium Models for Diffusive Cavitation of Grain Boundaries
,”
Acta Metall. Mater.
,
27
, pp.
265
284
.
9.
Speight
,
M. V.
, and
Beere
,
W.
,
1975
, “
Vacancy Potential and Void Growth on Grain Boundaries
,”
Met. Sci.
,
9
, pp.
190
191
.
10.
Needleman
,
A.
, and
Rice
,
J. R.
,
1980
, “
Plastic Flow Creep Effects in the Diffusive Cavitation of Grain Boundaries
,”
Acta Metall. Mater.
,
28
, pp.
1315
1332
.
11.
Weertman
,
J. R.
,
1979
, “
Fatigue Induced Cavitation in Single-Phase Material
,”
Can. Metall. Quart.
,
18
, pp.
73
81
.
12.
Raj
,
R.
,
1975
, “
Transient Behavior of Diffusion-Induced Creep and Creep Rupture
,”
Metall. Trans. A
,
6A
, pp.
1499
1509
.
13.
Bower, A. F., and Chuang, T.-J., 1998, “Transient Creep Cavity Growth in Structural Ceramics,” Proceedings of CICC-1, Beijing, China.
14.
ABAQUS Finite Element Software, 1999, User Manual, Ver. 5.8, Hibbitt, Karlsson, and Sorenson.
15.
Frost, H. J., and Ashby, M. F., 1982, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford.
16.
Vitek
,
V.
,
1978
, “
A Theory of Diffusion Controlled Intergranular Creep Crack Growth
,”
Acta Metall. Mater.
,
26
, pp.
1345
1356
.
17.
Trinkaus
,
H.
,
1979
, “
Drift Diffusion in Grain Boundaries under the Influence of Stress Fields
,”
Phys. Status Solidi
,
93
, pp.
293
303
.
18.
Shewmon
,
P.
, and
Anderson
,
P.
,
1998
, “
Void Nucleation and Cracking at Grain Boundaries
,”
Acta Metall. Mater.
,
46
, pp.
4861
4872
.
19.
Hirth, J. P., and Lothe, J., 1968, Theory of Dislocations, McGraw Hill, New York.
You do not currently have access to this content.