Quantitative strain analysis (QSA) provides a means for assessing the orientation-dependent micromechanical stress states in bulk polycrystalline materials. When combined with quantitative texture analysis, it facilitates tracking the evolution of micromechanical states associated with selected texture components for specimens deformed in situ. To demonstrate this ability, a sheet specimen of rolled and recrystallized oxygen-free high conductivity Cu was subject to tensile deformation at APS 1-ID-C. Strain pole figures (SPFs) were measured at a series of applied loads, both below and above the onset of macroscopic yielding. From these data, a lattice strain distribution function (LSDF) was calculated for each applied load. Due to the tensorial nature of the LSDF, the full orientation-dependent stress tensor fields can be calculated unambiguously from the single-crystal elastic moduli. The orientation distribution function (ODF) is used to calculate volume-weighted average stress states over tubular volumes centered on the 100[100], 311[100], and 111[100] fibers—accounting for 50% of the total volume—are shown as functions of the applied load along [100]. Corresponding weighted standard deviations are calculated as well. Different multiaxial stress states are observed to develop in the crystal subpopulations despite the uniaxial nature of the applied stress. The evolution of the orientation-dependent elastic strain energy density is also examined. The effects of applying stress bound constraints on the SPF inversion are discussed, as are extensions of QSA to examine defect nucleation and propagation.

1.
Dawson
,
P. R.
,
Miller
,
M. P.
,
Han
,
T. S.
, and
Bernier
,
J. V.
, 2005, “
An Accelerated Methodology for the Evaluation of Critical Properties in Polyphase Alloys
,”
Metall. Mater. Trans. A
1073-5623,
36A
, pp.
1627
1641
.
2.
Wanner
,
A.
, and
Dunand
,
D.
, 2000, “
Synchrotron X-Ray Study of Bulk Lattice Strains in Externally Loaded Cu-Mo Composites
,”
Metall. Mater. Trans. A
1073-5623,
31
, pp.
2949
2962
.
3.
Martins
,
R. V.
,
Margulies
,
L.
,
Schmidt
,
S.
,
Poulsen
,
H. F.
, and
Leffers
,
T.
, 2004, “
Simultaneous Measurement of the Strain Tensor of 10 Individual Grains Embedded in an al Tensile Sample
,”
Mater. Sci. Eng., A
0921-5093,
387–389
, pp.
84
88
.
4.
Haeffner
,
D. R.
,
Almer
,
J. D.
, and
Lienert
,
U.
, 2005, “
The Use of High Energy X-Rays From the Advanced Photon Source to Study Stresses in Materials
,”
Mater. Sci. Eng., A
0921-5093,
399
, pp.
120
127
.
5.
Martins
,
R. V.
,
Lienert
,
U.
,
Margulies
,
L.
, and
Pyzalla
,
A.
, 2005, “
Determination of the Radial Crystallite Microstrain Distribution Within an almg3 Torsion Sample Using Monochromatic Synchrotron Radiation
,”
Mater. Sci. Eng., A
0921-5093,
402
, pp.
278
287
.
6.
Miller
,
M. P.
,
Bernier
,
J. V.
,
Park
,
J. S.
, and
Kazimirov
,
A. Y.
, 2005, “
Experimental Measurement of Lattice Strain Pole Figures Using Synchrotron X-Rays
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
113903
.
7.
Young
,
M. L.
,
DeFouw
,
J.
,
Almer
,
J. D.
, and
Dunand
,
D. C.
, 2007, “
Load Partitioning During Compressive Loading of a Mg∕MgB2 Composite
,”
Acta Mater.
1359-6454,
55
, pp.
3467
3478
.
8.
2000,
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,
U. F.
Kocks
,
C. N.
Tomé
, and
H. R.
Wenk
, eds.,
Cambridge University Press
,
Cambridge, UK
.
9.
Chateigner
,
D.
, 2006, “
Combined Analysis: Structure-Texture-Microstructure-Phase-Stresses-Reflectivity Determination by X-Rays and Neutron Scattering
,” URL: www.ecole.ensicaen.fr/~chateign/texture/combined.pdfwww.ecole.ensicaen.fr/~chateign/texture/combined.pdf.
10.
Bernier
,
J. V.
, and
Miller
,
M. P.
, 2006, “
A Direct Method for the Determination of the Mean Orientation-Dependent Elastic Strains and Stresses in Polycrystalline Materials From Strain Pole Figures
,”
J. Appl. Crystallogr.
0021-8898,
39
(
3
), pp.
358
368
.
11.
Nye
,
J. F.
, 1985,
Physical Properties of Crystals: Their Representation by Tensors and Matrices
,
Oxford University Press
,
New York
.
12.
Matthies
,
S.
,
Wenk
,
H.-R.
, and
Vinel
,
G. W.
, 1988, “
Some Basic Concepts of Texture Analysis and Comparison of Three Methods to Calculate Orientation Distributions From Pole Figures
,”
J. Appl. Crystallogr.
0021-8898,
21
(
4
), pp.
285
304
.
13.
Kocks
,
U. F.
, 2000, “
Anisotropy and Symmetry
,”
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,
U. F.
Kocks
,
C. N.
Tomé
, and
H. R.
Wenk
, eds.,
Cambridge University Press
,
Cambridge
, Chap. 1, pp.
10
43
.
14.
Behnken
,
H.
, 2000, “
Strain-Function Method for the Direct Evaluation of Intergranular Strains and Stresses
,”
Phys. Status Solidi A
0031-8965,
177
, pp.
401
418
.
15.
Wang
,
Y. D.
,
Lin Peng
,
R.
, and
McGreevy
,
R. L.
, 2001, “
A Novel Method for Constructing the Mean Field of Grain Orientation-Dependent Residual Stress
,”
Philos. Mag. Lett.
0950-0839,
81
(
3
), pp.
153
163
.
16.
Bunge
,
H. J.
, 1982,
Texture Analysis in Materials Science
,
Butterworths
,
London
.
17.
Roe
,
R. J.
, 1965, “
Description of Crystalline Orientation in Polycrystalline Materials III: General Solution to Pole Figure Inversion
,”
J. Appl. Phys.
0021-8979,
36
(
6
), pp.
2024
2031
.
18.
Bunge
,
H. J.
, 1969,
Mathematische Methonden der Textureanalyse
,
Akademie Verlag
,
Berlin
.
19.
Kallend
,
J. S.
, 2000, “
Determination of the Orientation Distribution From Pole Figure Data
,”
Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Materials Properties
,
U. F.
Kocks
,
C. N.
Tomé
, and
H. R.
Wenk
, eds.,
Cambridge University Press
,
Cambridge
, Chap. 3, pp.
102
125
.
20.
Bernier
,
J. V.
,
Miller
,
M. P.
, and
Boyce
,
D. E.
, 2006, “
A Novel Optimization-Based Pole-Figure Inversion Method: Comparison With Wimv and Maximum Entropy Methods
,”
J. Appl. Crystallogr.
0021-8898,
39
(
5
), pp.
697
713
.
21.
Miller
,
M. P.
,
Park
,
J. S.
,
Dawson
,
P. R.
, and
Han
,
T. S.
, 2007, “
Measuring and Modeling Distributions of Stress State in Deforming Polycrystals
,”
Acta Mater.
1359-6454 (to be published).
22.
Lutterotti
,
L.
, 2000, “
Maud: A Rietveld Analysis Program Designed for the Internet and Experiment Integration
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
0108-7673,
56
, p.
S54
.
23.
Ischia
,
G.
,
Wenk
,
H. R.
,
Lutterotti
,
L.
, and
Berberich
,
F.
, 2005, “
Quantitative Rietveld Texture Analysis of Zirconium From Single Synchrotron Diffraction Images
,”
J. Appl. Crystallogr.
0021-8898,
38
, pp.
377
380
.
24.
Lonardelli
,
I.
,
Wenk
,
H. R.
,
Lutterotti
,
L.
, and
Goodwin
,
M.
, 2005, “
Texture Analysis From Synchrotron Diffraction Images With the Rietveld Method: Dinosaur Tendon and Salmon Scale
,”
J. Synchrotron Radiat.
0909-0495,
12
, pp.
354
360
.
25.
Wenk
,
H.-R.
,
Bunge
,
H. J.
,
Kallend
,
J. S.
,
Lücke
,
K.
,
Matthies
,
S.
,
Pospiech
,
J.
, and
Van Houtte
,
P.
, 1988, “
Orientation Distribution: Representation and Determination
,”
Proceedings of the Eighth International Conference on Textures of Materials (ICOTOM-8)
,
Warrendale, PA
,
J. S.
Kallend
and
G.
Gottstein
eds., pp.
17
30
.
26.
Kelly
,
A.
,
Groves
,
G. W.
, and
Kidd
,
P.
, 2000,
Crystallography and Crystal Defects
,
Wiley
,
New York
.
27.
Wenk
,
H.-R.
,
Lutterotti
,
L.
, and
Vogel
,
S.
, 2003, “
Texture Analysis With the New Hippo Tof Diffractometer
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
515
, pp.
575
588
.
28.
Croft
,
M.
,
Zakharchenko
,
I.
,
Zhong
,
Z.
,
Gurlak
,
Y.
,
Hastings
,
J.
,
Hu
,
J.
,
Holtz
,
R.
,
DaSilva
,
M.
, and
Tsakalakos
,
T.
, 2002, “
Strain Field and Scattered Intensity Profiling With Energy Dispersive X-Ray Scattering
,”
J. Appl. Phys.
0021-8979,
92
(
1
), pp.
578
586
.
29.
Schuren
,
J. C.
,
Watts
,
S.
,
Park
,
J. S.
, and
Miller
,
M. P.
, 2007, “
A System for Measuring Crystal Level Stresses in Deforming Polycrystals
,”
Proceedings of the 2007 SEM Annual Conference and Exposition on Experimental and Applied Mechanics
,
Bethel, CT
, Vol.
82
, p.
4
.
30.
Bernier
,
J. V.
, 2006, “
On the Use of Diffraction in Quantifying the Structure and Micromechanical State of Polycrystalline Materials
,” Ph.D. thesis, Cornell University.
31.
Han
,
T. S.
, and
Dawson
,
P. R.
, 2005, “
Lattice Strain Partitioning in a Two-Phase Alloy and Its Redistribution Upon Yielding
,”
Mater. Sci. Eng., A
0921-5093,
405
, pp.
18
33
.
You do not currently have access to this content.