Abstract

A novel method for kinematic analysis of parallel-axes epicyclic gear trains is presented, called the incidence and transfer method, which uses the incidence matrices associated with the edge-oriented graph associated to the mechanism and the transfer joints (teeth contact joints). Relative to such joints, a set of independent equations can be generated for calculating the angular positions, velocities, and accelerations. Complete kinematic equations are obtained in matrix form using a base of circuits from a cycle matroid. The analysis uses the relationships between the number of mobile links, number of joints, and number of circuits in the base of circuits, together with the Latin matrix (whose entries are function of the absolute values of the partial gear ratios of the transmission). Calculating the rank of the Latin matrix can identify singularities, like groups of gears that rotate as a whole. Relationships between the output and input angular velocities and accelerations are then determined in a matrix-based approach without using any derivative operations. The proposed method has general applicability and can be employed for systems with any number of gears and degrees of freedom, as illustrated by the numerical examples presented.

1.
Willis
,
R.
, 1870,
Principles of Mechanism
, 2nd Ed.,
Longmans, Green and Co.
, London.
2.
Ravigneaux
,
P.
, 1930, “Theorie Nouvelle sur les Trains Epicycloidaus et les Mouvements Relatifs,” La Technique Automobile et Aerienne,
21
, pp.
97
106
.
3.
Voinea
,
R.
, and
Atanasiu
,
M.
, 1964,
New Analytical Methods in Mechanism Theory
,
Editura Tehnica
, Bucharest (in Romanian).
4.
Glover
,
J. H.
, 1965, “
Efficiency and Speed-Ratio Formulas for Planetary Gear Systems
,”
Prod. Eng. (N.Y.)
0032-9754,
27
, pp.
72
79
.
5.
Levai
,
Z.
, 1968, “
Structure and Analysis of Epicyclic Gear Trains
,”
J. Mech.
0022-2569,
3
, pp.
131
148
.
6.
Martin
,
G. H.
, 1969,
Kinematics and Dynamics of Machines
,
McGraw-Hill
, New York, pp.
298
306
.
7.
Cleghorn
,
W. L.
, and
Tyc
,
G.
, 1987, “
Kinematic Analysis of Planetary Gear Trains Using a Microcomputer
,”
Int. J. Mech. Eng. Educ.
,
15
, pp.
57
69
.
8.
Norton
,
R. L.
, 2004,
Design of Machinery
,
McGraw-Hill
, New York, pp.
497
499
.
9.
Buchsbaum
,
F.
, and
Freudenstein
,
F.
, 1970, “
Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms
,”
J. Mech.
0022-2569,
5
, pp.
357
392
.
10.
Freudenstein
,
F.
, 1971, “
An Application of Boolean Algebra to the Motion of Epicyclic Drives
,”
Veh. Syst. Dyn.
0042-3114,
93
, pp.
176
182
.
11.
Hsu
,
C. H.
, and
Lam
,
K. T.
, 1992, “
A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains
,”
ASME J. Mech. Des.
1050-0472,
114
, pp.
196
200
.
12.
Tsai
,
L. W.
, 1988, “
The Kinematics of Spatial Robotic Bevel-Gear Trains
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
4
, pp.
150
155
.
13.
Chatterjee
,
G.
, and
Tsai
,
L. W.
, 1996, “
Computer-Aided Sketching of Epicyclic-Type Automatic Transmission Gear Trains
,”
ASME J. Mech. Des.
1050-0472,
118
(
3
), pp.
405
411
.
14.
Shai
,
O.
, and
Pennock
,
G. R.
, 2006, “
Extension of Graph Theory to the Duality Between Static Systems and Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
1
), pp.
179
191
.
15.
Nelson
,
C. A.
, and
Cipra
,
R. J.
, 2005, “
Simplified Kinematic Analysis of Bevel Epicyclic Gear Trains With Application to Power-Flow and Efficiency Analyses
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
278
286
.
16.
Gudal
,
S.
,
Pan
,
Y.
,
Liou
,
S. Y.
,
Sundararajan
,
V.
,
Antonetti
,
D.
, and
Wright
,
P. W.
, 2004, “Design System for Composite Transmission Error Prediction for Automatic Transmission,” 2004 ASME DETC, Paper no. DETC2004-57721.
17.
Shai
,
O.
, and
Preiss
,
K.
, 1999, “
Graph Theory Representation of Engineering Systems and their Embedded Knowledge
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
13
(
2
), pp.
273
284
.
18.
Dunn
,
A. L.
,
Houser
,
D. R.
, and
Lim
,
T. C.
, 1999, “
Methods for Researching Gear Whine in Automotive Transaxles
, ”
J. Passen. Cars: Mech. Syst.
,
118
(
6
), pp.
2849
2858
.
19.
Kahraman
,
A.
, 1994, “
Planetary Gear Train Dynamics
,”
ASME J. Mech. Des.
1050-0472,
116
, pp.
713
720
.
20.
Talpasanu
,
I.
, 1991, “Optimization of the Kinematic Calculation of the Plane and Spatial Solid Body Systems,” International Association for Advancement of Modelling and Simulation Techniques in Enterprises (AMSE) Conference,
New Orleans, LA
, October 28-30, pp.
99
109
.
21.
Recski
,
A.
, 1989,
Matroid Theory and its Applications in Electric Network Theory and in Statics
,
Springer
, Berlin.
22.
Kavesh
,
A.
, 1997,
Optimal Structural Analysis
,
Research Studies Press (Wiley)
, Exeter, U.K.
23.
Shai
,
O.
, 2001, “
The Multidisciplinary Combinatorial Approach and its Applications in Engineering
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
15
, pp.
109
144
.
24.
Talpasanu
,
I.
, 2004, “Kinematics and Dynamics of Mechanical Systems Based on Graph-Matroid Theory,” Ph.D. Dissertation, University of Texas at Arlington.
25.
Oxley
,
J.
, 1992,
Matroid Theory
,
Oxford University Press
Oxford.
26.
Zhou
,
H.
, and
Ting
,
K. L.
, 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
753
759
.
27.
Whitney
,
H.
, 1935, “
On the Abstract Properties of Linear Dependence
,”
Am. J. Math.
0002-9327,
57
, pp.
509
533
.
28.
White
,
N.
, ed., 1986,
Theory of Matroids
,
Cambridge University Press
, Cambridge.
29.
Kutzbach
,
K.
, 1929, “
Mechanische Leitungverzweigung; ihre Gasetze und Anwendungen
,”
Machinenbau, der Betrieb
,
8
, pp.
710
716
.
30.
Hsieh
,
H. I.
, and
Tsai
,
L. W.
, 1996, “
Kinematic Analysis of Epicylic-Type Transmissions Mechanisms Using the Concept of Fundamental Kinematic Entities
,”
ASME J. Mech. Des.
1050-0472,
118
(
2
), pp.
294
299
.
31.
Selgado
,
D. R.
, and
Del Castillo
,
J. M.
, 2005, “
A Method for Detecting Degenerate Structures in Planetary Gear Trains
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
948
962
.
32.
Voinea
,
R.
,
Atanasiu
,
M.
,
Iordache
,
M.
, and
Talpasanu
,
I.
, 1983, “Determination of the Kinematic Parameters for a Planar Linkage Mechanism by the Independent Loop Method,” Proceedings of the Fifth International Conference on Control Systems and Computer Science, Bucharest,
1
, pp.
20
23
.
33.
Lang
,
S. Y.T.
, 2005 “
Graph-theoretic modeling of epicyclic gear systems
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
511
529
.
34.
Simionescu
,
P. A.
,
Beale
,
D. G.
, and
Dozier
,
G. V.
, 2006, “
Teeth-Number Synthesis of a Multispeed Planetary Transmission Using an Estimation of Distribution Algorithm
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
108
115
.
You do not currently have access to this content.