Noncircular bevel gear can achieve variable transmission between intersecting axes. Based on polar coordinates, a design method for noncircular bevel gears is presented. The geometric characteristic of tooth profiles of the gears can be obtained by means of geometry principles for spherical engagement and a pair of conjugated crown racks, which can engage with the driver noncircular bevel gear and driven one, respectively. A series of new conception such as tangent azimuth angle, concavity of conical surfaces, and module angle are proposed to describe spherical geometry relationship in meshing. Meanwhile, geometrical characters of the crown rack cutter are derived. Based on this cutter, the accurate mathematical model of noncircular bevel gear tooth profile is deduced, and the determinant criterion for undercutting is presented. As an example, the three-dimensional models of noncircular bevel gear pair are established to demonstrate the feasibility of the proposed method. A noncircular bevel gear set can be designed by this method if the special included angle for intersecting axes and transmission function ratio are given.

1.
Gao
,
X. Q.
, 2003, “
Summation of Noncircular Gear Drive Technology
,”
J. Mech. Trans.
,
27
(
3
), pp.
5
8
, in Chinese.
2.
Xiong
,
Z. Q.
,
Gao
,
B. H.
, and
Wu
,
X. T.
, 2004, “
A Research on Oil Distribution Design of Hydraulic Motors With NonCircular Planetary Gear
,”
Mechanical Science and Technology
,
23
(
5
), pp.
509
511
and p. 552, in Chinese.
3.
Han
,
Z. Q.
, and
Peng
,
J. G.
, 2002, “
Preparation of Fuel Consume Sensor With Oval-Shaped Gears for Trucks
,”
Journal of Transduction Technology
,
15
(
2
), pp.
180
184
, in Chinese.
4.
Dooner
,
D. B.
, 1997, “
Use of Noncircular Gears to Reduce Torque and Speed Fluctuations in Rotating Shafts
,”
ASME J. Mech. Des.
1050-0472,
119
(
2
), pp.
299
306
.
5.
Brown
,
J.
, 1996, “
Noncircular Gears Make Unconventional Moves
,”
Power Transmission Design
,
38
(
3
), pp.
29
31
.
6.
Emura
,
T.
, and
Arakawa
,
A.
, 1992, “
New Steering Mechanism Using Noncircular Gears
,”
JSME Int. J., Ser. III
0914-8825,
35
(
4
), pp.
604
610
.
7.
Dooner
,
D. B.
, 1999, “
A Geared 2-dof Mechanical Function Generator
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
65
70
.
8.
Dunkerly
,
S.
, 1910,
Mechanism
,
Longmans, Green, and Co.
,
London
, New York.
9.
Miller
,
F. H.
, and
Yong
,
C. H.
, 1945, “
Proportions of Elliptic Gears for Quick Return Mechanism
,”
Prod. Eng. (N.Y.)
0032-9754,
16
, pp.
462
464
.
10.
Gobler
,
H. E.
, 1939, “
Rollcuver Gears
,”
Trans. ASME
0097-6822,
61
(
3
), pp.
223
231
.
11.
Ollson
,
U.
, 1953,
Non-Circular Cylindrical Gears
(
Acta Polytechnica, Mechanical Engineering Series
),
The Royal Swedish Academy of Engineering Sciences
,
Stockholm, Sweden
, Vol.
2
.
12.
Litivin
,
F. L.
, 1956,
Noncircular Gear
,
National Machine Science and Technology Press
,
Moscow
, in Russian.
13.
Tsay
,
M. F.
, and
Fong
,
Z. H.
, 2005, “
Study on the Generalized Mathematical Model of Noncircular Gears
,”
Math. Comput. Modell.
0895-7177,
41
, pp.
555
569
.
14.
Figliolini
,
G.
, and
Angeles
,
J.
, 2005, “
Synthesis of the Base Curves For N-Lobed Elliptical Gears
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
997
1005
.
15.
Barkah
,
D.
,
Shafiq
,
B.
, and
Dooner
,
D.
, 2002, “
3D Mesh Generation for Static Stress Determination in Spiral Noncircular Gears Used for Torque Balancing
,”
ASME J. Mech. Des.
1050-0472,
124
(
6
), pp.
313
319
.
16.
Chang
,
S. L.
, and
Tsay
,
C. B.
, 1998, “
Computerized Tooth Profile Generation and Undercut Analysis of Noncircular Gears Manufactured With Shaper Cutters
,”
ASME J. Mech. Des.
1050-0472,
120
(
1
), pp.
92
99
.
17.
Subba
,
R. B.
,
Shunmugam
,
M. S.
, and
Jayaprakash
,
V.
, 1994, “
Mathematical Model for Generation of Spiral Bevel Gears
,”
J. Mater. Process. Technol.
0924-0136,
44
(
3–4
), pp.
327
334
.
18.
Fong
,
Z. H.
, and
Tsay
,
C. B.
, 1991, “
Mathematical Model for The Tooth Geometry of Circular-Cut Spiral Bevel Gears
,”
ASME J. Mech. Des.
1050-0472,
113
(
2
), pp.
174
181
.
19.
Tsai
,
Y. C.
, and
Chin
,
P. C.
, 1987, “
Surface Geometry of Straight and Spiral Bevel Gears
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
(
4
), pp.
443
449
.
20.
Al-Daccak
,
M. J.
,
Angeles
,
J.
, and
González-Palacios
,
M. A.
, 1994, “
Modeling of Bevel Gears Using the Exact Spherical Involute
,”
ASME J. Mech. Des.
1050-0472,
116
(
2
), pp.
364
368
.
21.
Figliolini
,
G.
, and
Angeles
,
J.
, 2005, “
Algorithms for Involute and Octoidal Bevel-Gear Generation
,”
ASME J. Mech. Des.
1050-0472,
127
(
7
), pp.
664
672
.
22.
Brauer
,
J.
, 2002, “
Analytical Geometry of Straight Conical Involute Gears
,”
Mech. Mach. Theory
0094-114X,
37
, pp.
127
141
.
23.
Li
,
G. X.
,
Li
,
X.
,
Wen
,
J. M.
,
Zhang
,
X.
, and
Liu
,
Y.
, 2004, “
Meshing Theory and Simulation of Non-Involute Neveloid Gears
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
883
892
.
24.
Katori
,
H.
, and
Hayashi
,
T.
, 1989, “
Simplified Synthetic Design Method of Pitch Curves and Tooth Profiles for Non-Circular Gears
,”
Proceedings of 1989 International Power Transmission Gearing Conference on New Technological Power Transmission 90’s
, pp.
527
532
.
25.
Li
,
F. S.
, 1983,
The Design of Noncircular Gear and Special Gear
,
Mechanic Industry Press
,
Beijing
, in Chinese.
26.
Li
,
J. G.
,
Wu
,
X. T.
,
Mao
,
S. M.
, and
He
,
J. L.
, 2005, “
Numerical Computation of Tooth Profile of Noncircular Gear
,”
Journal of Xi’an Jiaotong University
,
39
(
1
), pp.
75
78
.
27.
He
,
G. P.
,
Hu
,
C. B.
, and
Sha
,
C. M.
, 2004, “
The Mathematical Mode of Non-Circle Internal Gear for Generating Cutting and its Graphics Simulation
,”
Machinery Design and Manufacture
,
42
(
6
), pp.
8
11
, in Chinese.
28.
Tan
,
W. M.
, and
Yu
,
Z. Y.
, 2004, “
Teeth-profiles of Non-Circular Gears With Micro-Segment Profile and Their Graphic Simulation
,”
Machinery Manufacturing Engineer
,
26
(
5
), pp.
35
38
, in Chinese.
29.
Lin
,
J.
,
Xiao-yu
,
E.
, and
Xie
,
L.-Y.
, 2003, “
Direct-Profile-Design Method for Generating Noncircular Gear Pairs
,”
Journal of Northeastern University (Natural Science)
,
24
(
9
), pp.
847
851
, in Chinese.
30.
He
,
J. L.
, and
Wu
,
X. T.
, 2003, “
Study on Geometrical Design of Conical Involute Gear Pair With Nonintersecting-Nonparallel-Axes
,”
Journal of Xi’An Jiao Tong University
,
37
(
5
), pp.
471
474
, in Chinese.
31.
Dooner
,
D. B.
, and
Seireg
,
A.
, 1995,
The Kinematic Geometry of Gearing: A Concurrent Engineering Approach
(
Wiley Series in Design Engineering
),
Wiley-Interscience Wiley
,
New York
.
32.
Ollson
,
U.
, 1959,
NonCircular Bevel Gears
(
Acta Polytechnica, Mechanical Engineering Series
),
The Royal Swedish Academy of Engineering Sciences
,
Stockholm Sweden
.
33.
Wang
,
X. C.
,
Wu
,
X. T.
, and
Peng
,
W.
, 1990, “
An Efficient Differential With Viable Transmission Ratio
,” China Patent No. 1043981A, in Chinese.
34.
Jia
,
J. M.
,
Gao
,
B.
, and
Qiao
,
Y. W.
, 2003, “
A Study on Variable Ratio Differential for Off-Road Vehicles
,”
Automot. Eng.
0098-2571,
25
(
5
), pp.
498
500
, in Chinese.
35.
Fu
,
Z. S.
, 1999,
Differential Geometry and Meshing Theory of Gear
,
China University of Petroleum Press
,
Beijing
, p.
12
, in Chinese.
36.
Bartsch
,
H. J.
, 1974,
Handbook of Mathematical Formulas
,
Academic
,
New York
.
You do not currently have access to this content.