A novel integrated approach is developed to design systems for stability and robustness. First, design parameters with large variation bounds are chosen to maintain system stability. Then, a robust eigenvalue design problem is considered to make the dynamic response less sensitive to parameter variations. A new complex sensitivity matrix is derived from the system dynamics with the eigenvalue variation approximated into a first-order model by means of the eigenvector orthogonal theory. Through a proper transformation, the complex eigenvalue sensitivity of the Jacobian matrix can still be processed by the traditional robust design approach. By minimizing the eigenvalue sensitivity, design parameters can be obtained for stability as well as robustness. Furthermore, the tolerance space of the selected parameters can be maximized to improve robust performance. A Laval rotor example is used to demonstrate the effectiveness of the proposed robust design method.

1.
Blanco
,
A. M.
, and
Bandoni
,
J. A.
, 2003, “
Interaction Between Process Design and Process Operability of Chemical Processes: An Eigenvalue Optimization Approach
,”
Comput. Chem. Eng.
0098-1354,
27
(
8-9
), pp.
1291
1301
.
2.
Kliem
,
W.
,
Pommer
,
C.
, and
Stoustrup
,
J.
, 1998, “
Stability of Rotor Systems: A Complex Modelling Approach
,”
ZAMP
0044-2275,
49
(
4
), pp.
644
655
.
3.
El-Kady
,
M. A.
, and
Al-Ohaly
,
A. A.
, 1997, “
Fast Eigenvalue Sensitivity Calculations for Special Structures of Matrix Derivatives
,”
J. Sound Vib.
0022-460X,
199
(
3
), pp.
463
471
.
4.
Gürgöze
,
M.
, 1998, “
Comments on ‘Fast Eigenvalue Sensitivity Calculations for Special Structures of Matrix Derivative’
,”
J. Sound Vib.
0022-460X,
212
(
2
), pp.
365
369
.
5.
Orbak
,
A. Y.
,
Eskinat
,
E.
, and
Turkay
,
O. S.
, 2004, “
Physical Parameter Sensitivity of System Eigenvalues and Physical Model Reduction
,”
J. Franklin Inst.
0016-0032,
341
(
7
), pp.
631
655
.
6.
Ralph
,
B.
, and
Stephen
,
N. S.
, 1989, “
Approaches to Robust Pole Assignment
,”
Int. J. Control
0020-7179,
49
(
1
), pp.
97
117
.
7.
Kautsky
,
J.
,
Nichols
,
N. K.
, and
Van Dooren
,
P.
, 1985, “
Robust Pole Assignment in Linear State Feedback
,”
Int. J. Control
0020-7179,
41
(
5
), pp.
1129
1155
.
8.
Hu
,
S.
, and
Wang
,
J.
, 2002, “
A Gradient Flow Approach to On-Line Robust Pole Assignment for Synthesizing Output Feedback Control System
,”
Automatica
0005-1098,
38
, pp.
1959
1968
.
9.
Labibi
,
B.
,
Marquez
,
H. J.
, and
Chen
,
T.
, 2006, “
Diagonal Dominance Via Eigenstructure Assignment
,”
Int. J. Control
0020-7179,
79
(
7
), pp.
707
718
.
10.
Kim
,
H. J.
, and
Park
,
Y. P.
, 2004, “
Investigation of Robust Roll Motion Control Considering Varying Speed and Actuator Dynamics
,”
Mechatronics
0957-4158,
14
(
1
), pp.
35
54
.
11.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H. -J.
, and
Mistree
,
F.
, 2006, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
AMSE J. Mech. Des.
,
128
(
4
), pp.
832
843
. 1050-0472
12.
Rajagopalan
,
S.
, and
Cutkosky
,
M.
, 2003, “
Error Analysis for the In-Situ Fabrication of Mechanisms
,”
AMSE J. Mech. Des.
,
125
(
4
), pp.
809
822
. 1050-0472
13.
Iyer
,
R.
, and
Downs
,
T.
, 1980, “
A Variance Minimization Approach to Tolerance Design
,”
IEEE Trans. Circuits Syst.
0098-4094,
27
, pp.
737
747
.
14.
Ong
,
Y. S.
,
Nair
,
P. B.
, and
Lum
,
K. Y.
, 2006, “
Max-Min Surrogate-Assisted Evolutionary Algorithm for Robust Design
,”
IEEE Trans. Evol. Comput.
1089-778X,
10
, pp.
392
404
.
15.
Zhu
,
J. M.
, and
Ting
,
K. L.
, 2001, “
Performance Distribution Analysis and Robust Design
,”
AMSE J. Mech. Des.
,
123
(
1
), pp.
11
17
. 1050-0472
16.
Caro
,
S.
,
Bennis
,
F.
, and
Wenger
,
P.
, 2005, “
Tolerance Synthesis of Mechanisms: A Robust Design Approach
,”
AMSE J. Mech. Des.
,
127
(
1
), pp.
86
94
. 1050-0472
17.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K. -L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
AMSE J. Mech. Des.
,
118
(
4
), pp.
478
493
. 1050-0472
18.
Chen
,
W.
,
Sahai
,
A.
,
Messac
,
A.
, and
Sundararaj
,
G. J.
, 2000, “
Exploration of the Effectiveness of Physical Programming in Robust Design
,”
AMSE J. Mech. Des.
,
122
(
2
), pp.
155
163
. 1050-0472
19.
Al-Widyan
,
K.
, and
Angeles
,
J.
, 2005, “
A Model-Based Formulation of Robust Design
,”
AMSE J. Mech. Des.
,
127
(
3
), pp.
388
396
. 1050-0472
20.
Beyer
,
H. -G.
, and
Sendhoff
,
B.
, 2007, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
3190
3218
.
21.
Hachicho
,
O.
, 2007, “
A Novel LMI-Based Optimization Algorithm for the Guaranteed Estimation of the Domain of Attraction Using Rational Lyapunov Functions
,”
J. Franklin Inst.
0016-0032,
344
(
5
), pp.
535
552
.
22.
Dimitriadis
,
V. D.
, and
Pistikopoulos
,
E. N.
, 1995, “
Flexibility Analysis of Dynamic System
,”
Ind. Eng. Chem. Res.
0888-5885,
34
, pp.
4451
4462
.
23.
Seyranian
,
A. P.
, and
Kliem
,
W.
, 2003, “
Metelitsyn’s Inequality and Stability Criteria in Mechanical Problems
,”
Proceedings of the 2003 International Conference on Physics and Control
, Vol.
4
, Issue No.
20–22
, pp.
1096
1101
.
You do not currently have access to this content.