This paper deals with the design of a new class of hybrid mechanism dedicated to humanoid robotics application. Since the designing and control of humanoid robots are still open questions, we propose the use of a new class of mechanisms in order to face several challenges that are mainly the compactness and the high power to mass ratio. Human ankle and wrist joints can be considered more compact with the highest power capacity and the lowest weight. The very important role played by these joints during locomotion or manipulation tasks makes their design and control essential to achieve a robust full size humanoid robot. The analysis of all existing humanoid robots shows that classical solutions (serial or parallel) leading to bulky and heavy structures are usually used. To face these drawbacks and get a slender humanoid robot, a novel three degrees of freedom hybrid mechanism achieved with serial and parallel substructures with a minimal number of moving parts is proposed. This hybrid mechanism that is able to achieve pitch, yaw, and roll movements can be actuated either hydraulically or electrically. For the parallel submechanism, the power transmission is achieved, thanks to cables, which allow the alignment of actuators along the shin or the forearm main axes. Hence, the proposed solution fulfills the requirements induced by both geometrical, power transmission, and biomechanics (range of motion) constraints. All stages including kinematic modeling, mechanical design, and experimentation using the HYDROïD humanoid robot’s ankle mechanism are given in order to demonstrate the novelty and the efficiency of the proposed solution.

1.
Saglia
,
J.
,
Dai
,
J.
, and
Caldwell
,
D.
, 2008, “
Geometry and Kinematic Analysis of a Redundantly Actuated Parallel Mechanism That Eliminates Singularity and Improves Dexterity
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
124501
.
2.
Bucca
,
G.
,
Bezzolato
,
A.
,
Bruni
,
S.
, and
Molteni
,
F.
, 2009, “
A Mechatronic Device for the Rehabilitation of Ankle Motor Function
,”
ASME J. Biomech. Eng
0148-0731,
131
, p.
125001
.
3.
Kaneko
,
K.
,
Kanehiro
,
F.
,
Kajita
,
S.
,
Hirukawa
,
H.
,
Kawasaki
,
T.
,
Hirata
,
M.
,
Akachi
,
K.
, and
Isozumi
,
T.
, 2004, “
Humanoid Robot HRP-2
,”
IEEE International Conference on Robotics and Automation, ICRA
, pp.
1083
1090
.
4.
Hirai
,
K.
,
Hirose
,
M.
, and
Takenaka
,
T.
, 1998, “
Development of Honda Humanoid Robot
,”
IEEE International Conference on Robotics and Automation (ICRA)
, p.
1321
Ű
26
.
6.
Nishiwaki
,
K.
,
Kagami
,
S.
,
Kuffner
,
J.
,
Inaba
,
M.
, and
Inoue
,
H.
, 2002, “
Humanoid JSK H7: Research Platform for Autonomous Behavior and Whole Body Motion
,”
Proceedings of International Workshop Humanoid and Human Friendly Robotics, IARP
, pp.
2
9
.
7.
Lohmeier
,
S.
,
Buschmann
,
T.
,
Ulbrich
,
H.
, and
Pfeiffer
,
F.
, 2008,
Humanoid Robot LOLAŰ Research Platform for Highspeed Walking: Motion and Vibration Control
,
Springer
,
The Netherlands
.
8.
Oh
,
J.
,
Hanson
,
D.
,
Kim
,
W.
,
Kim
,
I. Y. H. J.
, and
Park
,
I. -W.
, 2006, “
Design of Android Type Humanoid Robot Albert HUBO
,”
International Conference on Intelligent Robots and Systems
.
9.
Gouaillier
,
D.
,
Hugel
,
V.
,
Blazevic
,
P.
,
Kilner
,
C.
,
Monceaux
,
J.
,
Lafourcade
,
P.
,
Marnier
,
B.
,
Serre
,
J.
, and
Maisonnier
,
B.
, 2009, “
Mechatronic Design of NAO Humanoid
,”
International Conference on Robotics and Automation
.
10.
Costa
,
N.
,
Brown
,
M.
,
Hutchins
,
G.
, and
Caldwell
,
D.
, 2005, “
Design of Human-Friendly Powered Lower Limb Rehabilitation Orthosis
,”
Workshop on Human Adaptive Mechatronics
, pp.
69
75
.
11.
Ogura
,
Y.
,
Aikawa
,
H.
,
Shimomura
,
K.
,
Kondo
,
H.
,
Morishima
,
A.
,
Lim
,
H.
, and
Takanishi
,
A.
, 2006, “
Development of a New Humanoid Robot WABIAN-2
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, pp.
76
81
.
12.
Cheng
,
G.
,
Hyon
,
S. -H.
,
Morimoto
,
J.
,
Ude
,
A.
,
Hale
,
J. G.
,
Colvin
,
G.
,
Scroggin
,
W.
, and
Jacobsen
,
S. C.
, 2007, “
CB: A Humanoid Research Platform for Exploring Neuroscience
,”
Adv. Rob.
0169-1864,
21
, pp.
1097
1114
.
13.
Sellaouti
,
R.
, and
Ouezdou
,
F.
, 2005, “
Design and Control of 3DOFs Parallel Actuated Mechanism for Biped Application
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
1367
1393
.
14.
Sias
,
F. R.
, Jr.
, and
Zheng
,
Y. F.
, 1990, “
How Many Degrees-of-Freedom Does a Biped Need?
,”
IROS 1990 IEEE International Conference on Intelligent Robots and Systems
.
15.
Hanavan
,
E. P.
, 1964, “
A Mathematical Model of the Human Body
,” Aerospace Medical Research Laboratories.
16.
Cabodevila
,
G.
,
Chaillet
,
N.
, and
Abba
,
G.
, 1995, “
Energy-Minimized Gait for a Biped Robot
,”
Autonome Mobile Systems
,
R.
Dillmann
,
U.
Rembold
, and
T.
Lüth
, eds., Fachgespräch, pp.
90
99
.
17.
Gravez
,
F.
,
Bruneau
,
O.
, and
Ouezdou
,
F.
, 2005, “
Analytical and Automatic Modeling of Digital Humanoids
,”
IJHR, World Scientific
,
2
, pp.
337
359
.
18.
Sanderson
,
D. J.
, and
Martin
,
P.
, 1997, “
Lower Extremity Kinematic and Kinetic Adaptations in Unilateral Below-Knee Amputees During Walking
,”
Gait and Posture
0966-6362,
6
, pp.
126
136
.
19.
Hoshino
,
K.
, and
Kawabuchi
,
I.
, 2006, “
Mechanism of Humanoid Robot Arm With 7 DOFs Having Pneumatic Actuators
,”
IEICE Trans. Fundamentals
0916-8508,
E89-A
, pp.
3290
3297
.
20.
Lenarcic
,
J.
,
Stanisic
,
M. M.
, and
Parenti-Castelli
,
V.
, 2000, “
Kinematic Design of a Humanoid Robotic Shoulder Complex
,”
ICRA 2000 IEEE International Conference on Intelligent Robotics and Automation
.
21.
Agrawal
,
S. K.
,
Desmier
,
G.
, and
Li
,
S.
, 1995, “
Fabrication and Analysis of a Novel 3 DOF Parallel Wrist Mechanism
,”
ASME J. Mech. Des.
0161-8458,
117
(
2
), pp.
343
345
.
22.
Yoon
,
J.
,
Nadha
,
H.
,
Lee
,
D.
, and
Kim
,
G. S.
, 2006, “
A Novel 4-DOF Robotic Foot Mechanism With Multi-Platform for Humanoid Robot
,”
SICE-ICASE 2006, International Joint Conference
.
23.
Gouttefarde
,
M.
, and
Gosselin
,
C. M.
, 2005, “
Wrench-Closure Workspace of Six-DOF Parallel Mechanisms Driven by 7 Cables
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
29
, pp.
541
552
.
24.
Perreault
,
S.
, and
Gosselin
,
C.
, 2008, “
Cable-Driven Parallel Mechanisms: Application to a Locomotion Interface
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
102301
.
25.
Khalil
,
W.
, and
Dombre
,
E.
, 2004,
Modeling, Identification and Control of Robots
,
Kogan Page
.
26.
Phillips
,
J.
, 1990,
Freedom in Machinery. Volume 2, Screw Theory Exemplified
,
Cambridge University Press
,
Cambridge
.
27.
Alfayad
,
S.
,
Ouezdou
,
F. B.
,
Namoun
,
F.
, and
Cheng
,
G.
, 2009, “
Lightweight High Performance Integrated Actuator for Humanoid Robotic Applications: Modeling, Design & Realization
,”
ICRA
.
You do not currently have access to this content.