Abstract

Compared with conventional vehicles, autonomous vehicles (AVs) are featured by increased energy efficiency and road safety, yet hardly meet with much success without enough human trust. Designing appropriate interactions between AV and human, such as communication with pedestrians, could help enhance trust and public acceptance. In this work, we examine design characteristics of AV interface, including communication style, explicit display of vehicle speed, and adaptive strategy, and study their effects on pedestrians’ trust behaviors. It is found that any communication style could improve pedestrians’ trust in AV and decision alignment with AV expectations. Among the three communication styles, commanding and advisory are significantly better than informative, in terms of trust improvement (commanding versus informative: t = 3.61 and p < 0.001; advisory versus informative: t = 2.78, p = 0.005) and decision alignment ((a) in expected cross scenarios, commanding versus informative: t = 0.35 and p < 0.001; advisory versus informative: t = 11.71, p < 0.001; (b) in expected not cross scenarios, commanding versus informative: t = −7.61, p < 0.001; advisory versus informative: t = −6.40, p < 0.001). Adding speed information on top of explicit message communication does not change the relative effectiveness of individual styles, even though the display of speed-only information has significantly improved both measures (trust: F = 9.39 and p = 0.002; decision: F = 6.04 and p = 0.015). In addition, applying an adaptive communication strategy when yielding would significantly improve pedestrians’ trust (t = 9.33 and p < 0.001) and decision alignment (t = 14.78 and p < 0.001). This study demonstrates the influence of design characteristics on the formation of trust relationships between pedestrians and autonomous vehicles and paves the ways for developing more advanced AV communication mechanisms.

References

1.
Edmonds
,
E.
,
2018
, “
AAA: American Trust in Autonomous Vehicles Slips
,” AAA.com, https://newsroom.aaa.com/2018/05/aaa-american-trust-autonomous-vehicles-slips/, Accessed December 28, 2020.
2.
Edmonds
,
E.
,
2020
, “
Self-Driving Cars Stuck in Neutral on the Road to Acceptance
,” AAA.com, https://newsroom.aaa.com/tag/autonomous-vehicles/, Accessed December 28, 2020.
3.
Tennant
,
C.
,
Stares
,
S.
, and
Howard
,
S.
,
2019
, “
Public Discomfort at the Prospect of Autonomous Vehicles: Building on Previous Surveys to Measure Attitudes in 11 Countries
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
64
, pp.
98
118
. 10.1016/j.trf.2019.04.017
4.
Biever
,
W.
,
Angell
,
L.
, and
Seaman
,
S.
,
2020
, “
Automated Driving System Collisions: Early Lessons
,”
Hum. Factors
,
62
(
2
), pp.
249
259
. 10.1177/0018720819872034
5.
Kang
,
N.
,
Feinberg
,
F. M.
, and
Papalambros
,
P. Y.
,
2017
, “
Autonomous Electric Vehicle Sharing System Design
,”
ASME J. Mech. Des.
,
139
(
1
), p.
011402
. 10.1115/1.4034471
6.
Luo
,
J.
,
Yan
,
B.
, and
Wood
,
K.
,
2017
, “
InnoGPS for Data-Driven Exploration of Design Opportunities and Directions: The Case of Google Driverless Car Project
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111416
. 10.1115/1.4037680
7.
Choi
,
J. K.
, and
Ji
,
Y. G.
,
2015
, “
Investigating the Importance of Trust on Adopting an Autonomous Vehicle
,”
Int. J. Hum. Comput. Interact.
,
31
(
10
), pp.
692
702
. 10.1080/10447318.2015.1070549
8.
Reig
,
S.
,
Norman
,
S.
,
Morales
,
C. G.
,
Das
,
S.
,
Steinfeld
,
A.
, and
Forlizzi
,
J.
,
2018
, “
A Field Study of Pedestrians and Autonomous Vehicles
,”
Proc. 10th Int. Conf. Automot. User Interfaces Interact. Veh. Appl.
, pp.
198
209
.
9.
Lee
,
Y. M.
,
Madigan
,
R.
,
Giles
,
O.
,
Garach-Morcillo
,
L.
,
Markkula
,
G.
,
Fox
,
C.
,
Camara
,
F.
,
Rothmueller
,
M.
,
Vendelbo-Larsen
,
S. A.
,
Rasmussen
,
P. H.
,
Dietrich
,
A.
,
Nathanael
,
D.
,
Portouli
,
V.
,
Schieben
,
A.
, and
Merat
,
N.
,
2020
, “
Road Users Rarely Use Explicit Communication When Interacting in Today’s Traffic: Implications for Automated Vehicles
,”
Cogn. Technol. Work
,
1
, p.
3
.
10.
Rasouli
,
A.
, and
Tsotsos
,
J. K.
,
2020
, “
Autonomous Vehicles That Interact With Pedestrians: A Survey of Theory and Practice
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
3
), pp.
900
918
. 10.1109/TITS.2019.2901817
11.
UrmsonIan
,
C. P.
,
Mahon
,
J.
,
Dolgov
,
D. A.
, and
Zhu
,
J.
,
2015
, “
Pedestrian Notifications
,” U.S. Patent No. 9196164B1.
12.
Sweeney
,
M.
,
Pilarski
,
T.
,
Ross
,
W. P.
, and
Liu
,
C.
,
2018
, “
Light Output System For a Self-driving Vehicle
,” U.S. Patent 20180072218.
13.
Löcken
,
A.
,
Golling
,
C.
, and
Riener
,
A.
,
2019
, “
How Should Automated Vehicles Interact with Pedestrians? A Comparative Analysis of Interaction Concepts in Virtual Reality
,”
Proceedings of 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications
,
Utrecht, The Netherlands
,
Sept. 22–25
.
14.
Roshandeh
,
A. M.
,
2013
, “
Systemwide Intersectional Signal Timing Optimization Simultaneously Minimizing Vehicle and Pedestrian Delays
,”
Ph.D. dissertation
,
Illinois Institute of Technology
,
Chicago, IL
.
15.
Moore
,
D.
,
Currano
,
R.
,
Strack
,
G. E.
, and
Sirkin
,
D.
,
2019
, “
The Case for Implicit External Human-Machine Interfaces for Autonomous Vehicles
,”
Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications
,
Utrecht, The Netherlands
,
Sept. 22–25
.
16.
Dey
,
D.
, and
Terken
,
J.
,
2017
, “
Pedestrian Interaction with Vehicles: Roles of Explicit and Implicit Communication
,”
Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI ‘17)
,
Oldenburg, Germany
,
Sept. 24–27
.
17.
Lagström
,
T.
,
2015
, “
Autonomous Vehicleś Interaction With Pedestrians: An Investigation of Pedestrian-Driver Communication and Development of a Vehicle External Interface
,”
M.S. thesis
,
Chalmers University of Technology
,
Gothenborg, Sweden
.
18.
Losey
,
D. P.
,
McDonald
,
C. G.
,
Battaglia
,
E.
, and
O’Malley
,
M. K.
,
2018
, “
A Review of Intent Detection, Arbitration, and Communication Aspects of Shared Control for Physical Human–Robot Interaction
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010804
. 10.1115/1.4039145
19.
Vicentini
,
F.
,
2021
, “
Collaborative Robotics: A Survey
,”
ASME J. Mech. Des.
,
143
(
4
), p.
040802
. 10.1115/1.4046238
20.
Morato
,
C.
,
Kaipa
,
K. N.
,
Zhao
,
B.
, and
Gupta
,
S. K.
,
2014
, “
Toward Safe Human Robot Collaboration by Using Multiple Kinects Based Real-Time Human Tracking
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
011006
. 10.1115/1.4025810
21.
de Clercq
,
K.
,
Dietrich
,
A.
,
Núñez Velasco
,
J. P.
,
de Winter
,
J.
, and
Happee
,
R.
,
2019
, “
External Human-Machine Interfaces on Automated Vehicles: Effects on Pedestrian Crossing Decisions
,”
Hum. Factors
,
61
(
8
), pp.
1353
1370
. 10.1177/0018720819836343
22.
Chang
,
C. M.
,
Toda
,
K.
,
Sakamoto
,
D.
, and
Igarashi
,
T.
,
2017
, “
Eyes on a Car: An Interface Design for Communication Between an Autonomous Car and a Pedestrian
,”
Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications
,
Oldenburg, Germany
,
Sept. 24–27
.
23.
Ackermann
,
C.
,
Beggiato
,
M.
,
Schubert
,
S.
, and
Krems
,
J. F.
,
2019
, “
An Experimental Study to Investigate Design and Assessment Criteria: What Is Important for Communication Between Pedestrians and Automated Vehicles?
,”
Appl. Ergon.
,
75
(
2019
), pp.
272
282
. 10.1016/j.apergo.2018.11.002
24.
Bazilinskyy
,
P.
,
Dodou
,
D.
, and
de Winter
,
J.
,
2019
, “
Survey on EHMI Concepts: The Effect of Text, Color, and Perspective
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
67
, pp.
175
194
. 10.1016/j.trf.2019.10.013
25.
Fridman
,
L.
,
Lei
,
B. M.
,
Yangyang
,
X.
,
Laura
,
Y.
,
Facusse
,
Y.
, and
Reimer
,
B.
,
2019
, “
To Walk or Not to Walk: Crowdsourced Assessment of External Vehicle-to-Pedestrian Displays
,”
Transportation Research Board 98th Annual Meeting
,
Washington, DC
,
Jan. 13–17
.
26.
Deb
,
S.
,
Strawderman
,
L. J.
, and
Carruth
,
D. W.
,
2018
, “
Investigating Pedestrian Suggestions for External Features on Fully Autonomous Vehicles: A Virtual Reality Experiment
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
59
, pp.
135
149
. 10.1016/j.trf.2018.08.016
27.
Faas
,
S. M.
,
Mathis
,
L. A.
, and
Baumann
,
M.
,
2020
, “
External HMI for Self-Driving Vehicles: Which Information Shall Be Displayed?
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
68
, pp.
171
186
. 10.1016/j.trf.2019.12.009
28.
Liu
,
Y.
,
Lyu
,
Y.
,
Böttcher
,
K.
, and
Rötting
,
M.
,
2020
, “
External Interface-Based Autonomous Vehicle-to-Pedestrian Communication in Urban Traffic: Communication Needs and Design Considerations
,”
Int. J. Hum. Comput. Interact.
,
36
(
13
), pp.
1258
1272
. 10.1080/10447318.2020.1736891
29.
Wilson
,
G. F.
, and
Russell
,
C. A.
,
2007
, “
Performance Enhancement in an Uninhabited Air Vehicle Task Using Psychophysiologically Determined Adaptive Aiding
,”
Hum. Factors
,
49
(
6
), pp.
1005
18
. 10.1518/001872007X249875
30.
Kaber
,
D. B.
, and
Endsley
,
M. R.
,
2004
, “
The Effects of Level of Automation and Adaptive Automation on Human Performance, Situation Awareness and Workload in a Dynamic Control Task
,”
Theor. Issues Ergon. Sci.
,
5
(
2
), pp.
113
153
. 10.1080/1463922021000054335
31.
Hoff
,
K. A.
, and
Bashir
,
M.
,
2015
, “
Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust
,”
Hum. Factors
,
57
(
3
), pp.
407
434
. 10.1177/0018720814547570
32.
Lee
,
J. D.
, and
See
,
K. A.
,
2004
, “
Trust in Automation: Designing for Appropriate Reliance
,”
Hum. Factors
,
46
(
1
), pp.
50
80
. 10.1518/hfes.46.1.50.30392
33.
MacDonald
,
E. F.
, and
She
,
J.
,
2015
, “
Seven Cognitive Concepts for Successful Eco-design
,”
J. Clean. Prod.
,
92
, pp.
23
36
. 10.1016/j.jclepro.2014.12.096
34.
Barley
,
S. R.
,
1988
,
The Social Construction of a Machine: Ritual, Superstition, Magical Thinking and Other Pragmatic Responses to Running a CT Scanner
,
Springer, Dordrecht
, pp.
497
539
.
35.
Schaefer
,
K. E.
,
Chen
,
J. Y. C.
,
Szalma
,
J. L.
, and
Hancock
,
P. A.
,
2016
, “
A Meta-Analysis of Factors Influencing the Development of Trust in Automation: Implications for Understanding Autonomy in Future Systems
,”
Hum. Factors
,
58
(
3
), pp.
377
400
. 10.1177/0018720816634228
36.
Lu
,
Y.
, and
Sarter
,
N.
,
2019
, “
Eye Tracking: A Process-Oriented Method for Inferring Trust in Automation as a Function of Priming and System Reliability
,”
IEEE Trans. Human-Machine Syst.
,
49
(
6
), pp.
560
568
. 10.1109/THMS.2019.2930980
37.
Hu
,
W. L.
,
Akash
,
K.
,
Jain
,
N.
, and
Reid
,
T.
,
2016
, “
Real-Time Sensing of Trust in Human-Machine Interactions
,”
IFAC-PapersOnLine
,
49
(
32
), pp.
48
53
. 10.1016/j.ifacol.2016.12.188
38.
Liao
,
T.
, and
Macdonald
,
E. F.
,
2020
, “
Manipulating Users’ Trust of Autonomous Products With Affective Priming
,”
ASME J. Mech. Des.
,
143
(
5
), p.
051402
. 10.1115/1.4048640
39.
Liao
,
T.
, and
MacDonald
,
E.
,
2019
, “
Manipulating Trust of Autonomous Products With Affective Priming
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
.
40.
Ekman
,
F.
,
Johansson
,
M.
, and
Sochor
,
J.
,
2018
, “
Creating Appropriate Trust in Automated Vehicle Systems: A Framework for HMI Design
,”
IEEE Trans. Human-Machine Syst.
,
48
(
1
), pp.
95
101
. 10.1109/THMS.2017.2776209
41.
Waytz
,
A.
,
Heafner
,
J.
, and
Epley
,
N.
,
2014
, “
The Mind in the Machine: Anthropomorphism Increases Trust in an Autonomous Vehicle
,”
J. Exp. Soc. Psychol.
,
52
, pp.
113
117
. 10.1016/j.jesp.2014.01.005
42.
Muir
,
B. M.
,
1994
, “
Trust in Automation: Part I. Theoretical Issues in the Study of Trust and Human Intervention in Automated Systems
,”
Ergonomics
,
37
(
11
), pp.
1905
1922
. 10.1080/00140139408964957
43.
Damen
,
N.
, and
Toh
,
C.
,
2019
, “
Designing for Trust: Understanding the Role of Agent Gender and Location on User Perceptions of Trust in Home Automation
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061101
. 10.1115/1.4042223
44.
Merritt
,
S. M.
, and
Ilgen
,
D. R.
,
2008
, “
Not All Trust Is Created Equal: Dispositional and History-Based Trust in Human-Automation Interactions
,”
Hum. Factors
,
50
(
2
), pp.
194
210
. 10.1518/001872008X288574
45.
Verberne
,
F. M. F.
,
Ham
,
J.
, and
Midden
,
C. J. H.
,
2012
, “
Trust in Smart Systems: Sharing Driving Goals and Giving Information to Increase Trustworthiness and Acceptability of Smart Systems in Cars
,”
Hum. Factors
,
54
(
5
), pp.
799
810
. 10.1177/0018720812443825
46.
Matthews
,
M.
,
Chowdhary
,
G.
, and
Kieson
,
E.
,
2017
, “
Intent Communication Between Autonomous Vehicles and Pedestrians
,” CoRR, abs/1708.0.
47.
She
,
J.
,
2020
, “
Advisory and Adaptive Communication Improves Trust in Autonomous Vehicle and Pedestrian Interaction
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 16–19
.
48.
Mahadevan
,
K.
,
Somanath
,
S.
, and
Sharlin
,
E.
,
2018
, “
Communicating Awareness and Intent in Autonomous Vehicle-Pedestrian Interaction
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
,
ACM, Montreal QC, Canada
,
Apr. 21–26
.
49.
Song
,
Y. E.
,
Lehsing
,
C.
,
Fuest
,
T.
, and
Bengler
,
K.
,
2018
, “
External HMIs and Their Effect on the Interaction Between Pedestrians and Automated Vehicles
,”
International Conference on Intelligent Human Systems Integration
,
Dubai, UAE
,
Jan. 7–9
.
50.
Rouchitsas
,
A.
, and
Alm
,
H.
,
2019
, “
External Human–Machine Interfaces for Autonomous Vehicle-to-Pedestrian Communication: A Review of Empirical Work
,”
Front. Psychol.
,
10
, p.
2757
. 10.3389/fpsyg.2019.02757
51.
Habibovic
,
A.
,
Lundgren
,
V. M.
,
Andersson
,
J.
,
Klingegård
,
M.
,
Lagström
,
T.
,
Sirkka
,
A.
,
Fagerlönn
,
J.
,
Edgren
,
C.
,
Fredriksson
,
R.
,
Krupenia
,
S.
,
Saluäär
,
D.
, and
Larsson
,
P.
,
2018
, “
Communicating Intent of Automated Vehicles to Pedestrians
,”
Front. Psychol.
,
9
. 10.3389/fpsyg.2018.01336
52.
Andersson
,
J.
,
Habibovic
,
A.
,
Klingegård
,
M.
, and
Cristofer Englund
,
V. M.-L.
,
2017
, “
Hello Human, Can You Read My Mind?
,” ERCIM News 109, https://ercim-news.ercim.eu/en109/special/hello-human-can-you-read-my-mind, Accessed December 28, 2020.
53.
Risto
,
M.
,
2017
, “
Human-Vehicle Interfaces : The Power of Vehicle Movement Gestures in Human Road User Coordination
,”
Proceedings of the Ninth International Driving Symposium on Human Factors in Driver Assessment
,
Iowa City, IA
,
June 26–29
.
54.
Ullman
,
G. L.
, and
Rose
,
E. R.
,
2005
, “
Evaluation of Dynamic Speed Display Signs
,”
Transp. Res. Rec. J. Transp. Res. Board
,
1918
(
1
), pp.
92
97
. 10.1177/0361198105191800112
55.
Clamann
,
M.
,
Aubert
,
M.
, and
Cummings
,
M. L.
,
2017
, “
Evaluation of Vehicle-to-Pedestrian Communication Displays for Autonomous Vehicles
,”
Transportation Research Board 96th Annual Meeting
,
Washington DC
,
Jan. 8–12
.
56.
Rajaonah
,
B.
,
Tricot
,
N.
,
Anceaux
,
F.
, and
Millot
,
P.
,
2008
, “
The Role of Intervening Variables in Driver-ACC Cooperation
,”
Int. J. Hum. Comput. Stud.
,
66
(
3
), pp.
185
197
. 10.1016/j.ijhcs.2007.09.002
57.
de Visser
,
E.
, and
Parasuraman
,
R.
,
2011
, “
Adaptive Aiding of Human-Robot Teaming
,”
J. Cogn. Eng. Decis. Mak.
,
5
(
2
), pp.
209
231
. 10.1177/1555343411410160
58.
Ting
,
C. H.
,
Mahfouf
,
M.
,
Nassef
,
A.
,
Linkens
,
D. A.
,
Panoutsos
,
G.
,
Nickel
,
P.
,
Roberts
,
A. C.
, and
Hockey
,
G. R. J.
,
2010
, “
Real-Time Adaptive Automation System Based on Identification of Operator Functional State in Simulated Process Control Operations
,”
IEEE Trans. Syst. Man, Cybern. Part A: Systems Humans
,
40
(
2
), pp.
251
262
. 10.1109/TSMCA.2009.2035301
59.
Suresh
,
H. A.
,
Jayaraman
,
K.
,
Esterwood
,
C. T.
,
Jessie
,
X.
,
Lionel
,
Y.
, Jr
, and
Tilbury
,
D. M. P. R.
,
2020
, “
Real-Time Estimation of Drivers' Trust in Automated Driving Systems
,”
Int. J. Soc. Robot.
, pp.
1
17
.
60.
Ghosh
,
D.
,
Olewnik
,
A.
,
Lewis
,
K.
,
Kim
,
J.
, and
Lakshmanan
,
A.
,
2017
, “
Cyber-empathic Design: A Data-Driven Framework for Product Design
,”
ASME J. Mech. Des.
,
139
(
9
), p.
091401
. 10.1115/1.4036780
61.
Holländer
,
K.
,
Colley
,
A.
,
Mai
,
C.
,
Häkkilä
,
J.
,
Alt
,
F.
, and
Pfleging
,
B.
,
2019
, “
Investigating the Influence of External Car Displays on Pedestrians’ Crossing Behavior in Virtual Reality
,”
MobileHCI ‘19: Proceedings of the 21st International Conference on Human-Computer Interaction With Mobile Devices and Services
,
Taipei Taiwan
,
Oct. 1–4
.
62.
Golson
,
J.
,
2016
, “
Drive.Ai Wants to Help Autonomous Cars Talk With the People Around Them
,” THEVERGE.COM, https://www.theverge.com/2016/8/30/12700290/drive-ai-autonomous-car-human-robot-interface, Accessed December 28, 2020.
63.
Baayen
,
R. H.
,
Davidson
,
D. J.
, and
Bates
,
D. M.
,
2008
, “
Mixed-Effects Modeling With Crossed Random Effects for Subjects and Items
,”
J. Mem. Lang.
,
59
(
4
), pp.
390
412
. 10.1016/j.jml.2007.12.005
64.
Altman
,
D. G.
, and
Bland
,
J. M.
,
2005
, “
Standard Deviations and Standard Errors
,”
Br. Med. J.
,
331
(
7521
), p.
903
. 10.1136/bmj.331.7521.903
65.
Lakens
,
D.
,
Scheel
,
A. M.
, and
Isager
,
P. M.
,
2018
, “
Equivalence Testing for Psychological Research: A Tutorial
,”
Adv. Methods Pract. Psychol. Sci.
,
1
(
2
), pp.
259
269
. 10.1177/2515245918770963
66.
Snijders
,
T. A. B.
,
2005
,
Power and Sample Size in Multilevel Linear Models
,
Encyclopedia of Statistics in Behavioral Science, John Wiley & Sons, Ltd
.
67.
Rhemtulla
,
M.
,
Brosseau-Liard
,
, and
Savalei
,
V.
,
2012
, “
When Can Categorical Variables be Treated as Continuous? A Comparison of Robust Continuous and Categorical SEM Estimation Methods Under Suboptimal Conditions
,”
Psychol. Methods
,
17
(
3
), pp.
354
373
. 10.1037/a0029315
68.
Cohen
,
J.
,
1988
,
Statistical Power Analysis for the Behavioral Sciences
,
L. Erlbaum Associates
,
Hillsdale, N.J
.
69.
Jayaraman
,
S. K.
,
Creech
,
C.
,
Robert
,
L. P.
,
Tilbury
,
D. M.
,
Yang
,
X. J.
,
Pradhan
,
A. K.
, and
Tsui
,
K. M.
,
2018
, “
Trust in AV: An Uncertainty Reduction Model of AV-Pedestrian Interactions
,”
ACM/IEEE International Conference on Human-Robot Interaction
,
New York, NY
,
Mar. 5–8
.
70.
Lyons
,
J. B.
,
Sadler
,
G. G.
,
Koltai
,
K.
,
Battiste
,
H.
,
Ho
,
N. T.
,
Hoffmann
,
L. C.
,
Smith
,
D.
,
Johnson
,
W.
, and
Shively
,
R.
,
2016
, “
Shaping Trust Through Transparent Design: Theoretical and Experimental Guidelines
,”
Proceedings of the AHFE 2016 International Conference on Human Factors in Robots and Unmanned Systems
,
Walt Disney World®, FL
,
July 27–31
.
71.
Degani
,
A.
, and
Heymann
,
M.
,
2002
, “
Formal Verification of Human-Automation Interaction
,”
Hum. Factors
,
44
(
1
), pp.
28
43
. 10.1518/0018720024494838
72.
Vinod
,
A. P.
,
Thorpe
,
A. J.
,
Olaniyi
,
P. A.
,
Summers
,
T. H.
, and
Oishi
,
M. M. K.
,
2020
, “
Trust-Based User-Interface Design for Human-Automation Systems
,” arXiv:2004.07176.
You do not currently have access to this content.