Abstract

Path tracking error control is an essential functionality in the development of autonomous vehicles to follow a planned trajectory. Significant path tracking errors could lead to a collision or even out of the control of the vehicle. Model-based control strategies have been developed to minimize the vehicle’s path tracking errors. However, the vehicle model may not truly represent the actual vehicle dynamics. Furthermore, the parameters employed in the vehicle dynamic model may not represent the actual operating conditions of the vehicle under environmental uncertainty. This paper proposes a real-time bias-learning method coupling with the model predictive control (MPC) to improve the fidelity of a baseline vehicle model with the aid of a few experiments (or virtual experiments) so that the path tracking error can be reduced in real-time operation. Gaussian process (GP) regression and recurrent neural network (RNN) are employed for bias-learning and their effectiveness are compared under different scenarios. GP regression learns non-linearity of the model bias through its nonlinear kernel function, whereas the RNN model formulates the bias as a linear combination of hidden nodes which capture the non-linearity of the model bias with a recurrent form. Results reveal that RNN is more effective for real-time learning of the nonlinear model bias than the classical GP regression and the proposed bias-learning model is able to improve the fidelity of a baseline vehicle dynamic model. Consequently, path tracking performance can be greatly improved under environmental uncertainty using the bias-learning-based MPC.

References

1.
Ren
,
L.
, and
Xi
,
Z.
,
2021
, “
Design of Path Tracking Controller for Autonomous Vehicles Through Bias Learning of Vehicle Dynamic Models Under Environmental Uncertainty
,”
Proceedings of the 47th Design Automation Conference (DAC) of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 3B, p. V03BT03A011.
2.
Liu
,
Y.
,
Jiang
,
C.
,
Zhang
,
X.
,
Mourelatos
,
Z. P.
,
Barthlow
,
D.
,
Gorsich
,
D.
,
Singh
,
A.
, and
Hu
,
Z.
,
2022
, “
Reliability-Based Multi-Vehicle Path Planning Under Uncertainty Using a Bio-Inspired Approach
,”
ASME J. Mech. Des.
,
12
, pp.
1
44
.
3.
Liao
,
H.
,
Zhang
,
W.
,
Dong
,
X.
,
Poczos
,
B.
,
Shimada
,
K.
, and
Burak Kara
,
L.
,
2019
, “
A Deep Reinforcement Learning Approach for Global Routing
,”
ASME J. Mech. Des.
,
142
(
6
), p.
061701
.
4.
Jiang
,
C.
,
Liu
,
Y.
,
Mourelatos
,
Z. P.
,
Gorsich
,
D.
,
Fu
,
Y.
, and
Hu
,
Z.
,
2021
, “
Efficient Reliability-Based Mission Planning of Off-Road Autonomous Ground Vehicles Using an Outcrossing Approach
,”
ASME J. Mech. Des.
,
144
(
4
), p.
041703
.
5.
Wong
,
J.
,
1993
,
Theory of Ground Vehicles
, 2nd ed.,
Wiley
,
New York
.
6.
Bosch
,
R.
,
1996
,
Automotive Handbook
, 4th ed.,
Robert Bosch GmbH, Karlsruhe
,
Germany
.
7.
King-Hele
,
D.
,
2002
, “
Erasmus Darwin’s Improved Design for Steering Carriages—and Cars
,”
Notes Rec. R Soc. Lond.
,
56
(
1
), pp.
41
62
.
8.
Rajamani
,
R.
,
2006
,
Vehicle Dynamics and Control
, Vol.
1
,
Springer
,
New York
.
9.
Paden
,
B.
,
Čáp
,
M.
,
Yong
,
S. Z.
,
Yershov
,
D.
, and
Frazzoli
,
E.
,
2016
, “
A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles
,”
IEEE Trans. Intell. Veh.
,
1
(
1
), pp.
33
55
.
10.
Thrun
,
S.
,
Montemerlo
,
M.
,
Dahlkamp
,
H.
,
Stavens
,
D.
,
Aron
,
A.
,
Diebel
,
J.
,
Fong
,
P.
, et al
,
2006
, “
Stanley: The Robot That Won the Darpa Grand Challenge
,”
J. Field Rob.
,
23
(
01
), pp.
661
692
.
11.
Levinson
,
J.
,
Askeland
,
J.
,
Becker
,
J.
,
Dolson
,
J.
,
Held
,
D.
,
Kammel
,
S.
,
Kolter
,
J. Z.
, et al
,
2011
, “
Towards Fully Autonomous Driving: Systems and Algorithms
,”
Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV)
,
Baden, Germany
,
June 5–9
, pp.
163
168
.
12.
Qian
,
X.
,
Navarro
,
I.
,
de La Fortelle
,
A.
, and
Moutarde
,
F.
,
2016
, “
Motion Planning for Urban Autonomous Driving Using béZier Curves and mpc
,”
Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)
,
Rio de Janeiro, Brazil
,
Nov. 1–4
, pp.
826
833
.
13.
Ostafew
,
C. J.
,
Schoellig
,
A. P.
, and
Barfoot
,
T. D.
,
2014
, “
Learning-Based Nonlinear Model Predictive Control to Improve Vision-Based Mobile Robot Path-Tracking in Challenging Outdoor Environments
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
, pp.
4029
4036
.
14.
Bai
,
G.
,
Meng
,
Y.
,
Liu
,
L.
,
Luo
,
W.
,
Gu
,
Q.
, and
Li
,
K.
,
2019
, “
A New Path Tracking Method Based on Multilayer Model Predictive Control
,”
Appl. Sci.
,
9
(
6
), p.
2649
.
15.
Greer
,
R.
,
Deo
,
N.
, and
Trivedi
,
M.
,
2021
, “
Trajectory Prediction in Autonomous Driving With a Lane Heading Auxiliary Loss
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
4907
4914
.
16.
Wang
,
J.
,
Dai
,
M.
,
Yin
,
G.
, and
Chen
,
N.
,
2018
, “
Output-Feedback Robust Control for Vehicle Path Tracking Considering Different Human Drivers’ Characteristics
,”
Mechatronics
,
50
, pp.
402
412
.
17.
Chen
,
C.
,
Shu
,
M.
,
Wang
,
Y.
, and
Liu
,
R.
,
2020
, “
Robust H Control for Path Tracking of Network-Based Autonomous Vehicles
,”
Math. Probl. Eng.
,
2020
, p.
2537086
.
18.
Huynh
,
T.-H.
,
2012
, “
Direct Adaptive Control for Trajectory Tracking of Mobile Robots
,”
Proceedings of the 2012 International Conference on Control, Automation and Information Sciences (ICCAIS)
,
Saigon, Vietnam
,
Nov. 26–29
, pp.
300
305
.
19.
Naveed
,
K.
, and
Khan
,
Z. H.
,
2017
, “
Adaptive Path Tracking Control Design for a Wheeled Mobile Robot
,”
Proceedings of the 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE)
,
Beijing, China
,
Aug. 17–19
, pp.
194
199
.
20.
Nguyen
,
N.
,
2009
, “
Robust Optimal Adaptive Control Method With Large Adaptive Gain
,”
Proceedings of the AIAA Infotech@ Aerospace Conference and AIAA Unmanned, Unlimited Conference
,
Seattle, WA
,
Apr. 6–9
, p.
1802
.
21.
Jiang
,
Z.
,
Chen
,
W.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2013
, “
Reliability-Based Design Optimization With Model Bias and Data Uncertainty
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
502
516
.
22.
Shi
,
L.
,
Yang
,
R.-J.
, and
Zhu
,
P.
,
2014
, “
An Adaptive Response Surface Method Using Bayesian Metric and Model Bias Correction Function
,”
ASME J. Mech. Des.
,
136
(
3
), p.
031005
.
23.
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Active Resource Allocation for Reliability Analysis With Model Bias Correction
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051403
.
24.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
25.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
.
26.
Sabbioni
,
E.
,
Bao
,
R.
,
Cheli
,
F.
, and
Tarsitano
,
D.
,
2016
, “
A Particle Filter Approach for Identifying Tire Model Parameters From Full-Scale Experimental Tests
,”
ASME J. Mech. Des.
,
139
(
2
), p.
021403
.
27.
Kim
,
T.
, and
Park
,
T.-H.
,
2020
, “
Extended Kalman Filter (ekf) Design for Vehicle Position Tracking Using Reliability Function of Radar and Lidar
,”
Sensors
,
20
(
15
), p.
4126
.
28.
Chen
,
Y.-P.
, and
Chan
,
K.-Y.
,
2021
, “
Unknown Parameter Excitation and Estimation for Complex Systems With Dynamic Performances
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091704
.
29.
Zerdali
,
E.
,
2020
, “
A Comparative Study on Adaptive EKF Observers for State and Parameter Estimation of Induction Motor
,”
IEEE Trans. Energy Convers.
,
35
(
3
), pp.
1443
1452
.
30.
Safarinejadian
,
B.
, and
Kowsari
,
E.
,
2014
, “
Fault Detection in Non-Linear Systems Based on GP-EKF and GP-UKF Algorithms
,”
Syst. Sci. Control. Eng.
,
2
(
1
), pp.
610
620
.
31.
Nguyen-Tuong
,
D.
,
Seeger
,
M.
,
Peters
,
J.
,
Koller
,
D.
,
Schuurmans
,
D.
,
Bengio
,
Y.
, and
Bottou
,
L.
,
2008
, “
Local Gaussian Process Regression for Real Time Online Model Learning and Control
,”
Advances in Neural Information Processing Systems 21: Proceedings of the 2008 Conference
,
Nice, France
,
Sept. 22–26
, pp.
1193
1200
.
32.
Hensman
,
J.
,
Matthews
,
A.
, and
Ghahramani
,
Z.
,
2015
, “
Scalable Variational Gaussian Process Classification
,”
Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics
,
San Diego, CA
,
May 9–12
, pp.
351
360
.
33.
Williams
,
R. J.
, and
Zipser
,
D.
,
1989
, “
A Learning Algorithm for Continually Running Fully Recurrent Neural Networks
,”
Neural Comput.
,
1
(
2
), pp.
270
280
.
34.
Wen
,
M.
, and
Topcu
,
U.
,
2018
,
Advances in Neural Information Processing Systems
, Vol.
31
,
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
, eds.,
Curran Associates, Inc.
,
Montréal, Canada
, pp.
7450
7460
.
35.
Dosovitskiy
,
A.
,
Ros
,
G.
,
Codevilla
,
F.
,
Lopez
,
A.
, and
Koltun
,
V.
,
2017
, “
CARLA: An Open Urban Driving Simulator
,”
Proceedings of the 1st Annual Conference on Robot Learning
,
Mountain View, CA
,
Nov. 13–15
, pp.
1
16
.
36.
Hart
,
P.
,
Nilsson
,
N.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.
37.
Gardner
,
J. R.
,
Pleiss
,
G.
,
Bindel
,
D.
,
Weinberger
,
K. Q.
, and
Wilson
,
A. G.
,
2018
, “
Gpytorch: Blackbox Matrix-Matrix Gaussian Process Inference With GPU Acceleration
,”
32nd Conference on Neural Information Processing Systems (NeurIPS 2018)
,
Montréal, Canada
,
Dec. 2–8
.
38.
Caesar
,
H.
,
Bankiti
,
V.
,
Lang
,
A. H.
,
Vora
,
S.
,
Liong
,
V. E.
,
Xu
,
Q.
,
Krishnan
,
A.
,
Pan
,
Y.
,
Baldan
,
G.
, and
Beijbom
,
O.
,
2020
, “
Nuscenes: A Multimodal Dataset for Autonomous Driving
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
,
Virtual, Online
,
June 13-19
.
39.
Vorotović
,
G. S.
,
Rakicević
,
B. B.
,
Mitić
,
S. R.
, and
Stamenković
,
D. D.
,
2013
, “
Determination of Cornering Stiffness Through Integration of a Mathematical Model and Real Vehicle Exploitation Parameters
,”
FME Trans.
,
41
(
1
), pp.
66
71
.
40.
Darby
,
M. L.
, and
Nikolaou
,
M.
,
2012
, “
Mpc: Current Practice and Challenges
,”
Control Eng. Pract.
,
20
(
4
), pp.
328
342
. “Special Section: IFAC Symposium on Advanced Control of Chemical Processes,” ADCHEM 2009.
41.
Liu
,
Y.
, and
Zhang
,
J.
,
2020
, “
Electric Vehicle Battery Thermal and Cabin Climate Management Based on Model Predictive Control
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031705
.
42.
Pérez-Gil
,
Ó.
,
Barea
,
R.
,
López-Guillén
,
E.
,
Bergasa
,
L. M.
,
Gómez-Huélamo
,
C.
,
Gutiérrez
,
R.
, and
Díaz-Díaz
,
A.
,
2022
, “
Deep Reinforcement Learning based Control for Autonomous Vehicles in Carla
,”
Multimed. Tools. Appl.
,
81
(
3
), pp.
3553
3576
.
43.
Chua
,
K.
,
Calandra
,
R.
,
McAllister
,
R.
, and
Levine
,
S.
,
2018
, “
Deep Reinforcement Learning in a Handful of Trials Using Probabilistic Dynamics Models
”. CoRR, abs/1805.12114.
44.
Wainwright
,
M.
, and
Jordan
,
M.
,
2008
, “
Graphical Models, Exponential Families, and Variational Inference
,”
Found. Trends Mach. Learn.
,
1
(
1
), pp.
1
305
.
45.
Jankowiak
,
M.
,
Pleiss
,
G.
, and
Gardner
,
J. R.
,
2020
, “
Parametric Gaussian Process Regressors
,”
International Conference on Machine Learning
,
Virtual, Online
,
July 12–18
, PMLR, pp.
4702
4712
.
You do not currently have access to this content.