Abstract

In this work, we have developed a data-driven artificial intelligence (AI) solution to assist the ship hull design process. Specifically, we have developed and implemented an AI-based multiple-input neural network model to realize the real-time prediction of the total resistance of the ship hull structure while avoiding the inconsistent estimates from different types of design input parameters. It is demonstrated that the developed AI-based machine learning algorithm as a prediction tool can assist the ship hull design process by accurately providing the total resistance of ship hulls in real time. Moreover, we have conducted design tasks to validate the proposed method, and the validation results show that a well-trained artificial neural network model can avoid the problem of different sensitivities due to the different degrees of influence of the input parameters on the output parameter. The proposed AI-based data-driven solution provides a real-time hydrodynamic performance calculation, which can predict the hyperdynamic performances of ship hulls based on their geometry modification parameters. This approach gives a consistent prediction in terms of accuracy when facing different geometry modification parameters, and it in turn provides a fast and accurate AI-based method to assist ship hull design to achieve an optimum forecast accuracy in the entire design space, making an advance to artificial intelligence assist design in naval architecture engineering.

References

1.
Watson
,
D.G.
,
1998
,
Practical Ship Design
, Vol.
1
,
Elsevier
,
Amsterdam, Netherlands
.
2.
Bhattacharjee
,
K. S.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2018
, “
Multiple Surrogate-Assisted Many-Objective Optimization for Computationally Expensive Engineering Design
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051403
.
3.
Häggman
,
A.
,
Tsai
,
G.
,
Elsen
,
C.
,
Honda
,
T.
, and
Yang
,
M. C.
,
2015
, “
Connections Between the Design Tool, Design Attributes, and User Preferences in Early Stage Design
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071408
.
4.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
,
Springer
,
McGraw-Hill
, New York, p.
332
.
5.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
6.
Park
,
K. H.
,
Jun
,
S. O.
,
Baek
,
S. M.
,
Cho
,
M. H.
,
Yee
,
K. J.
, and
Lee
,
D. H.
,
2013
, “
Reduced-Order Model With an Artificial Neural Network for Aerostructural Design Optimization
,”
J. Aircr.
,
50
(
4
), pp.
1106
1116
.
7.
Du
,
X.
,
He
,
P.
, and
Martins
,
J. R.
,
2021
, “
Rapid Airfoil Design Optimization Via Neural Networks-Based Parameterization and Surrogate Modeling
,”
Aerosp. Sci. Technol.
,
113
, p.
106701
.
8.
Zhang
,
Y.
,
Jin
,
Z.
, and
Chen
,
Y.
,
2020
, “
Hybrid Teaching–Learning-Based Optimization and Neural Network Algorithm for Engineering Design Optimization Problems
,”
Knowl. Based Syst.
,
187
, p.
104836
.
9.
Chen
,
H.
,
He
,
L.
,
Qian
,
W.
, and
Wang
,
S.
,
2020
, “
Multiple Aerodynamic Coefficient Prediction of Airfoils Using a Convolutional Neural Network
,”
Symmetry
,
12
(
4
), p.
544
.
10.
Li
,
K.
,
Kou
,
J.
, and
Zhang
,
W.
,
2021
, “
Unsteady Aerodynamic Reduced-Order Modeling Based on Machine Learning Across Multiple Airfoils
,”
Aerosp. Sci. Technol.
,
119
, p.
107173
.
11.
Achour
,
G.
,
Sung
,
W. J.
,
Pinon-Fischer
,
O. J.
, and
Mavris
,
D. N.
,
2020
, “
Development of a Conditional Generative Adversarial Network for Airfoil Shape Optimization
,”
AIAA Scitech 2020 Forum
,
Orlando, FL
,
Jan. 6–10
, p.
2261
.
12.
Cepowski
,
T.
,
2020
, “
The Prediction of Ship Added Resistance at the Preliminary Design Stage by the Use of an Artificial Neural Network
,”
Ocean Eng.
,
195
, p.
106657
.
13.
Yu
,
D.
, and
Wang
,
L.
,
October 2018
, “
Hull Form Optimization With Principal Component Analysis and Deep Neural Network
,”
arXiv preprint arXiv:1810.11701
.
14.
Livieris
,
I.
,
Dafnis
,
S. D.
,
Papadopoulos
,
G. K.
, and
Kalivas
,
D. P.
,
2020
, “
A Multiple-Input Neural Network Model for Predicting Cotton Production Quantity: A Case Study
,”
Algorithms
,
13
(
11
), p.
273
.
15.
Oktay
,
O.
,
Bai
,
W.
,
Lee
,
M.
,
Guerrero
,
R.
,
Kamnitsas
,
K.
,
Caballero
,
J.
,
de Marvao
,
A.
,
Cook
,
S.
,
O’Regan
,
D.
, and
Rueckert
,
D.
,
2016
, “
Multi-Input Cardiac Image Super-Resolution Using Convolutional Neural Networks
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Athens, Greece
,
Oct. 17–21
, Springer, pp.
246
254
.
16.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,”
arXiv preprint arXiv:1412.6980
.
17.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques
,
Dallas, TX
,
Aug. 18–22
, pp.
151
160
.
18.
Tezzele
,
M.
,
Demo
,
N.
,
Mola
,
A.
, and
Rozza
,
G.
,
2021
, “
Pygem: Python Geometrical Morphing
,”
Softw. Impacts
,
7
, p.
100047
.
19.
Gaggero
,
S.
,
Villa
,
D.
, and
Viviani
,
M.
,
2015
, “
The Kriso Container Ship (KCS) Test Case: An Open Source Overview
,”
MARINE VI: Proceedings of the VI International Conference on Computational Methods in Marine Engineering
,
Rome, Italy
,
June 15–17
, pp.
735
749
.
20.
Kim
,
J.
,
2021
, “Experimental Data for KCS Resistance, Sinkage, Trim, and Self Propulsion,”
Numerical Ship Hydrodynamics
,
Springer
,
New York
, pp.
53
59
.
21.
Jain
,
A.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.
22.
Holtrop
,
J.
, and
Mennen
,
G.
,
1982
, “
An Approximate Power Prediction Method
,”
Int. Shipbuild. Prog.
,
29
(
335
), pp.
166
170
.
23.
Dawson
,
C.
,
1977
, “
A Practical Computer Method for Solving Ship-Wave Problems
,”
Proceedings of Second International Conference on Numerical Ship Hydrodynamics
,
University of California, Berkeley, CA
,
September
, pp.
30
38
.
24.
Li
,
Y.
,
Gong
,
J.
,
Ma
,
Q.
, and
Yan
,
S.
,
2018
, “
Effects of the Terms Associated With ϕzz in Free Surface Condition on the Attitudes and Resistance of Different Ships
,”
Eng. Anal. Bound. Elem.
,
95
, pp.
266
285
.
25.
Pillai
,
P. P.
,
Burnell
,
E.
,
Wang
,
X.
, and
Yang
,
M. C.
,
2020
, “
Effects of Robust Convex Optimization on Early-Stage Design Space Exploratory Behavior
,”
ASME J. Mech. Des.
,
142
(
12
), p.
121704
.
26.
Rabaud
,
M.
, and
Moisy
,
F.
,
2013
, “
Ship Wakes: Kelvin or Mach Angle?
,”
Phys. Rev. Lett.
,
110
(
21
), p.
214503
.
27.
Chollet
,
F.
,
2015
, “
Keras Documentation
,”
keras. io, 33
.
28.
Abadi
,
M.
,
Barham
,
P.
,
Chen
,
J.
,
Chen
,
Z.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Irving
,
G.
, and
Isard
,
M.
,
2016
, “
Tensorflow: A System for Large-Scale Machine Learning
,”
12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16)
,
Savannah, GA
,
Nov. 2–4
, pp.
265
283
.
29.
Prayudani
,
S.
,
Hizriadi
,
A.
,
Lase
,
Y.
, and
Fatmi
,
Y.
,
2019
, “
Analysis Accuracy of Forecasting Measurement Technique on Random k-Nearest Neighbor (RJNN) Using MAPE and MSE
,”
J. Phys.: Conf. Ser.
,
1361
(
1
), p.
012089
.
30.
Chai
,
T.
, and
Draxler
,
R.
,
2014
, “
Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments Against Avoiding RMSE in the Literature
,”
Geosci. Model Dev.
,
7
(
3
), pp.
1247
1250
.
31.
De Myttenaere
,
A.
,
Golden
,
B.
,
Le
,
G. B.
, and
Rossi
,
F.
,
2016
, “
Mean Absolute Percentage Error for Regression Models
,”
Neurocomputing
,
192
, pp.
38
48
.
32.
Solis
,
F. J.
, and
Wets
,
R. J.-B.
,
1981
, “
Minimization by Random Search Techniques
,”
Math. Oper. Res.
,
6
(
1
), pp.
19
30
.
You do not currently have access to this content.