Abstract

The design of hollow shafts is a common method in lightweight gear transmission systems, increasing the flexibility of the shaft. However, traditional models usually make the assumption of a rigid shaft or neglect the intricate effects of shaft flexibility on the contact characteristics of gear tooth pairs, which results in inconsistencies between model predictions and real-world observations. To settle this problem, a new three-dimensional analytical finite element model of a compliance gear-hollow shaft-bearing system is proposed. The proposed method considers the flexible effects of the hollow lightweight shaft, bearing, local contact between gear pairs, gear tooth, and the foundation. It enables the study of load distribution and time-varying meshing stiffness (TVMS) affected by hollow lightweight shafts. Based on the established dynamic model, the dynamic characteristics of the gear-hollow shaft-bearing system are analyzed. To validate the effectiveness of the proposed method, both the finite element method (FEM) and experimental methods are employed. Results demonstrate the correctness of the proposed method in evaluating the effect of hollow lightweight shafts on nonuniform load distribution, TVMS, and nonlinear dynamic characteristics. This evaluation yields better performance when compared to traditional methods that overlook the hollow lightweight shaft. It is inferred that this study can offer a theoretical basis for the design of hollow lightweight shafts in the gear transmission system.

References

1.
Abruzzo
,
M.
,
Beghini
,
M.
,
Romoli
,
L.
, and
Santus
,
C.
,
2023
, “
Design for Manufacturing of a Spur Gears Profile Modification Based on the Static Transmission Error for Improving the Dynamic Behavior
,”
Int. J. Adv. Manuf. Technol.
,
129
(
5–6
), pp.
1999
2010
.
2.
Roda-Casanova
,
V.
,
Sanchez-Marin
,
F.
, and
Martinez-Cuenca
,
R.
,
2023
, “
Convective Heat Transfer Modelling in Dry-Running Polymer Spur Gears
,”
Int. J. Mech. Sci.
,
241
, p.
107927
.
3.
Chen
,
Z.
,
Zhang
,
J.
,
Zhai
,
W.
,
Wang
,
Y.
, and
Liu
,
J.
,
2017
, “
Improved Analytical Methods for Calculation of Gear Tooth Fillet-Foundation Stiffness With Tooth Root Crack
,”
Eng. Fail. Anal.
,
82
, pp.
72
81
.
4.
Wang
,
Q.
,
Xu
,
K.
,
Huai
,
T.
,
Ma
,
H.
, and
Wang
,
K.
,
2021
, “
A Mesh Stiffness Method Using Slice Coupling for Spur Gear Pairs With Misalignment and Lead Crown Relief
,”
Appl. Math. Model.
,
90
, pp.
845
861
.
5.
Zou
,
H.
,
Wang
,
S.
,
Chen
,
P.
,
Ge
,
J.
, and
Liu
,
L.
,
2023
, “
Global Dynamic Characteristics Analysis of GTF Star Gear Transmission System Considering Ring Gear Elastic Deformation
,”
Thin-Wall. Struct.
,
198
, p.
111712
.
6.
Liu
,
J.
,
Li
,
X.
,
Pang
,
R.
, and
Xia
,
M.
,
2023
, “
Dynamic Modelling and Vibration Analysis of a Flexible Gear Transmission System
,”
Mech. Syst. Signal Process.
,
197
, p.
110367
.
7.
Liu
,
Z.
,
Huangfu
,
Y.
,
Ma
,
H.
,
Peng
,
Z.
,
Zhu
,
J.
,
Wang
,
H.
, and
Li
,
Z.
,
2022
, “
Traveling Wave Resonance Analysis of Flexible Spur Gear System With Angular Misalignment
,”
Int. J. Mech. Sci.
,
232
, p.
107617
.
8.
Pedrero
,
J. I.
,
Pleguezuelos
,
M.
, and
Sanchez
,
M. B.
,
2023
, “
Analytical Model for Meshing Stiffness, Load Sharing, and Transmission Error for Helical Gears With Profile Modification
,”
Mech. Mach. Theory
,
185
, p.
105340
.
9.
Ryali
,
L.
, and
Talbot
,
D.
,
2023
, “
A Dynamic Gear Load Distribution Model for Epicyclic Gear Sets With a Structurally Compliant Planet Carrier
,”
Mech. Mach. Theory
,
181
, p.
105225
.
10.
Wang
,
S.
, and
Zhu
,
R.
,
2022
, “
An Improved Mesh Stiffness Calculation Model for Cracked Helical Gear Pair With Spatial Crack Propagation Path
,”
Mech. Syst. Signal Process.
,
172
, p.
108989
.
11.
Sun
,
Z.
,
Tang
,
J.
,
Chen
,
S.
,
Chen
,
Y.
,
Hu
,
Z.
,
Wang
,
Z.
,
Lu
,
R.
, and
Chen
,
X.
,
2023
, “
Mesh Stiffness and Dynamic Response Analysis of Modified Gear System With Thin Web and Weight Reduction Holes
,”
J. Sound Vib.
,
546
, p.
117437
.
12.
Sun
,
Z.
,
Tang
,
J.
,
Chen
,
S.
,
Li
,
H.
,
Tao
,
X.
, and
Hu
,
Z.
,
2023
, “
Dynamical Modelling and Characteristics Analysis of Tooth Spalling in Gear System With Weight Reduction Structure
,”
Mech. Mach. Theory
,
189
, p.
105429
.
13.
Chen
,
Z.
,
Zhai
,
W.
,
Shao
,
Y.
,
Wang
,
K.
, and
Sun
,
G.
,
2016
, “
Analytical Model for Mesh Stiffness Calculation of Spur Gear Pair With Non-uniformly Distributed Tooth Root Crack
,”
Eng. Fail. Anal.
,
66
, pp.
502
514
.
14.
Saxena
,
A.
,
Parey
,
A.
, and
Chouksey
,
M.
,
2016
, “
Time Varying Mesh Stiffness Calculation of Spur Gear Pair Considering Sliding Friction and Spalling Defects
,”
Eng. Fail. Anal.
,
70
, pp.
200
211
.
15.
Chen
,
Z.
,
Ning
,
J.
,
Wang
,
K.
, and
Zhai
,
W.
,
2021
, “
An Improved Dynamic Model of Spur Gear Transmission Considering Coupling Effect Between Gear Neighboring Teeth
,”
Nonlinear Dyn.
,
106
(
1
), pp.
339
357
.
16.
Chaari
,
F.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2009
, “
Analytical Modelling of Spur Gear Tooth Crack and Influence on Gear Mesh Stiffness
,”
Eur. J. Mech. A-Solids
,
28
(
3
), pp.
461
468
.
17.
Wu
,
Y.
,
Wang
,
J.
, and
Han
,
Q.
,
2012
, “
Contact Finite Element Method for Dynamic Meshing Characteristics Analysis of Continuous Engaged Gear Drives
,”
J. Mech. Sci. Technol.
,
26
(
6
), pp.
1671
1685
.
18.
Li
,
S.
,
2015
, “
Effects of Misalignment Error, Tooth Modifications and Transmitted Torque on Tooth Engagements of a Pair of Spur Gears
,”
Mech. Mach. Theory
,
83
, pp.
125
136
.
19.
Wen
,
Q.
,
Du
,
Q.
, and
Zhai
,
X.
,
2019
, “
An Analytical Method for Calculating the Tooth Surface Contact Stress of Spur Gears With Tip Relief
,”
Int. J. Mech. Sci.
,
151
, pp.
170
180
.
20.
Liu
,
X.
,
Yang
,
Y.
, and
Zhang
,
J.
,
2016
, “
Investigation on Coupling Effects Between Surface Wear and Dynamics in a Spur Gear System
,”
Tribol. Int.
,
101
, pp.
383
394
.
21.
Suchul
,
K.
,
Geunho
,
L.
,
Sanggon
,
M.
,
Jaeseung
,
K.
,
Jaehoon
,
C.
,
Chan-ho
,
C.
,
Ahn
,
H.
, and
Sohn
,
J.
,
2020
, “
An Efficient Process for Macro Geometry Optimization of Helical Gear Pairs Considering Static Transmission Error
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng.
,
237
, pp.
4666
4681
.
22.
Huangfu
,
Y.
,
Chen
,
K.
,
Ma
,
H.
,
Li
,
X.
,
Han
,
H.
, and
Zhao
,
Z.
,
2020
, “
Meshing and Dynamic Characteristics Analysis of Spalled Gear Systems: A Theoretical and Experimental Study
,”
Mech. Syst. Signal Process.
,
139
, p.
106640
.
23.
Wang
,
C.
,
2021
, “
Study on 3-D Modification for Reducing Vibration of Helical Gear Based on TCA Technology, LTCA Technology and System Dynamics
,”
Mech. Syst. Signal Process.
,
146
, pp.
2415
2431
.
24.
Jordan
,
J. M.
,
Blockmans
,
B.
, and
Desmet
,
W.
,
2023
, “
A Linear Formulation for Misaligned Helical Gear Contact Analysis Using Analytical Contact Stiffnesses
,”
Mech. Mach. Theory
,
187
, p.
106991
.
25.
Pandya
,
Y.
, and
Parey
,
A.
,
2013
, “
Experimental Investigation of Spur Gear Tooth Mesh Stiffness in the Presence of Crack Using Photoelasticity Technique
,”
Eng. Fail. Anal.
,
34
, pp.
488
500
.
26.
Yang
,
L.
,
Wang
,
L.
,
Yu
,
W.
, and
Shao
,
Y.
,
2021
, “
Investigation of Tooth Crack Opening State on Time Varying Meshing Stiffness and Dynamic Response of Spur Gear Pair
,”
Eng. Fail. Anal.
,
121
, p.
105181
.
27.
Ma
,
H.
,
Pang
,
X.
,
Feng
,
R.
,
Zeng
,
J.
, and
Wen
,
B.
,
2015
, “
Improved Time-Varying Mesh Stiffness Model of Cracked Spur Gears
,”
Eng. Fail. Anal.
,
55
, pp.
271
287
.
28.
Ma
,
H.
,
Song
,
R.
,
Pang
,
X.
, and
Wen
,
B.
,
2014
, “
Fault Feature Analysis of a Cracked Gear Coupled Rotor System
,”
Math. Probl. Eng.
,
2014
(
1
), p.
832192
.
29.
Xie
,
C.
,
Hua
,
L.
,
Han
,
X.
,
Lan
,
J.
,
Wan
,
X.
, and
Xiong
,
X.
,
2018
, “
Analytical Formulas for Gear Body-Induced Tooth Deflections of Spur Gears Considering Structure Coupling Effect
,”
Int. J. Mech. Sci.
,
148
, pp.
174
190
.
30.
Yang
,
L.
,
Zou
,
D.
,
Sun
,
X.
,
Wang
,
L.
,
Shao
,
Y.
,
Gu
,
F.
,
Ball
,
A.
, and
Mba
,
D.
,
2023
, “
Dynamic Modelling and Analysis of Cracked Gear System With Tip Relief Based on Proposed Variable-Angle Deformation Energy Integration Method
,”
Nonlinear Dyn.
,
111
(
5
), pp.
4141
4172
.
31.
Fernandez del Rincon
,
A.
,
Viadero
,
F.
,
Iglesias
,
M.
,
García
,
P.
,
De-Juan
,
A.
, and
Sancibrian
,
R.
,
2013
, “
A Model for the Study of Meshing Stiffness in Spur Gear Transmissions
,”
Mech. Mach. Theory
,
61
, pp.
30
58
.
32.
Chen
,
K.
,
Huangfu
,
Y.
,
Ma
,
H.
,
Xu
,
Z.
,
Li
,
X.
, and
Wen
,
B.
,
2019
, “
Calculation of Mesh Stiffness of Spur Gears Considering Complex Foundation Types and Crack Propagation Paths
,”
Mech. Syst. Signal Process.
,
130
, pp.
273
292
.
33.
Geng
,
Z.
,
Xiao
,
K.
,
Wang
,
J.
, and
Li
,
J.
,
2019
, “
Investigation on Nonlinear Dynamic Characteristics of a New Rigid-Flexible Gear Transmission With Wear
,”
ASME J. Vib. Acoust.
,
141
(
5
), p.
051008
.
34.
Hu
,
Z.
,
Liu
,
W.
,
Chen
,
S.
,
Guan
,
X.
,
Wang
,
Z.
, and
Tian
,
Z.
,
2023
, “
Dynamic Modelling and Analysis of Thin-Webbed Spur Gear Pair
,”
Thin-Wall. Struct.
,
183
, p.
110386
.
35.
Huangfu
,
Y.
,
Dong
,
X.
,
Cao
,
Y.
,
Li
,
Z.
,
Peng
,
Z.
, and
Sun
,
Y.
,
2024
, “
A Life-Cycle Dynamic Wear Degradation Model of Planetary Gear Systems
,”
Wear
,
542–543
, p.
205281
.
36.
Liu
,
Z.
,
Shang
,
E.
,
Huangfu
,
Y.
,
Ma
,
H.
,
Zhu
,
J.
,
Zhao
,
S.
,
Long
,
X.
, and
Li
,
Z.
,
2023
, “
Vibration Characteristics Analysis of Flexible Helical Gear System With Multi-tooth Spalling Fault: Simulation and Experimental Study
,”
Mech. Syst. Signal Process.
,
201
, p.
110687
.
37.
Andersson
,
A.
, and
Vedmar
,
L.
,
2003
, “
A Dynamic Model to Determine Vibrations in Involute Helical Gears
,”
J. Sound Vib.
,
260
(
2
), pp.
195
212
.
38.
Chang
,
L.
,
Liu
,
G.
, and
Wu
,
L.
,
2015
, “
A Robust Model for Determining the Mesh Stiffness of Cylindrical Gears
,”
Mech. Mach. Theory
,
87
, pp.
93
114
.
39.
Sheng
,
L.
,
Xu
,
M.
,
Sun
,
Q.
,
Li
,
W.
, and
Ye
,
G.
,
2023
, “
Nonlinear Dynamics Analysis of Gear Transmission System Considering Tooth Surface Friction and Thermal Deformation
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
237
(
2
), pp.
220
235
.
40.
Ding
,
H.
, and
Kahraman
,
A.
,
2007
, “
Interactions Between Nonlinear Spur Gear Dynamics and Surface Wear
,”
J. Sound Vib.
,
307
(
3–5
), pp.
662
679
.
41.
Ouyang
,
T.
,
Huang
,
H.
,
Zhang
,
N.
,
Mo
,
C.
, and
Chen
,
N.
,
2017
, “
A Model to Predict Tribo-dynamic Performance of a Spur Gear Pair
,”
Tribol. Int.
,
116
, pp.
449
459
.
42.
Xu
,
H.
, and
Kahraman
,
A.
,
2007
, “
Prediction of Friction-Related Power Losses of Hypoid Gear Pairs
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn.
,
221
(
3
), pp.
387
400
.
43.
Donmez
,
A.
,
Thomas
,
C.
,
Kahraman
,
A.
, and
Handschuh
,
M.
,
2023
, “
Evaluation of Root Stresses of a Rattling Gear Pair
,”
Mech. Syst. Signal Process.
,
196
, p.
110335
.
44.
Yue
,
K.
,
Kang
,
Z.
,
Zhang
,
M.
,
Wang
,
L.
,
Shao
,
Y.
, and
Chen
,
Z.
,
2023
, “
Study on Gear Meshing Power Loss Calculation Considering the Coupling Effect of Friction and Dynamic Characteristics
,”
Tribol. Int.
,
183
, p.
108378
.
45.
Yu
,
W.
, and
Mechefske
,
C. K.
,
2019
, “
A New Model for the Single Mesh Stiffness Calculation of Helical Gears Using the Slicing Principle
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
43
(
S1
), pp.
S503
S515
.
You do not currently have access to this content.