Abstract

The individualization and diversification of customer requirements are gradually affecting the product design and manufacturing process, and the production mode of enterprises is evolving toward customer-oriented mass individualized customization. The change in customer requirements is inevitable in the process of individualized product design, which is the key factor leading to the change in product design. This paper establishes the correlation matrix of individualized product parts and components by mining correlation rules and constructs a correlation network model of these parts based on complex network theory. By comprehensively considering the influence of part nodes and their association relationships within the complex network, the intensity of change propagation is calculated using node importance and the probability of change propagation. The search for multi-source design change propagation paths is conducted through an improved ant colony algorithm, and the impact of customer requirement changes is evaluated using the network change rate as an index. This approach helps enterprises make informed decisions regarding customer requirements.

References

1.
Hvam
,
L.
,
Mortensen
,
N. H.
, and
Riis
,
J.
,
2008
,
Product Customization
,
Springer Science & Business Media
,
Berlin
.
2.
Zhang
,
L. L.
,
2014
, “
Product Configuration: A Review of the State-of-the-Art and Future Research
,”
Int. J. Prod. Res.
,
52
(
21
), pp.
6381
6398
.
3.
Tseng
,
M. M.
,
Jiao
,
R. J.
, and
Wang
,
C.
,
2010
, “
Design for Mass Personalization
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
175
178
.
4.
Xia
,
M.
, and
He
,
Y.
,
2020
, “
Research on the Construction of Smart Factory for Mass Personalization Production
,”
Proceedings of 2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)
,
Shenyang, China
,
Dec. 4–6
, IEEE, pp.
247
251
.
5.
Maull
,
R.
,
Hughes
,
D.
, and
Dennett
,
J.
,
1992
, “
The Role of the Bill-of-Materials as a CAD/CAPM Interface and the Key Importance of Engineering Change Control
,”
Comput. Control Eng. J.
,
3
(
2
), pp.
63
70
.
6.
Shankar
,
P.
,
Morkos
,
B.
, and
Summers
,
J. D.
,
2012
, “
Reasons for Change Propagation: A Case Study in an Automotive OEM
,”
Res. Eng. Des.
,
23
(
4
), pp.
291
303
.
7.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
8.
Wright
,
I. C.
,
1997
, “
A Review of Research Into Engineering Change Management: Implications for Product Design
,”
Des. Stud.
,
18
(
1
), pp.
33
42
.
9.
Huang
,
G.
, and
Mak
,
K. L.
,
1999
, “
Current Practices of Engineering Change Management in UK Manufacturing Industries
,”
Int. J. Oper. Prod. Manage.
,
19
(
1
), pp.
21
37
.
10.
Jarratt
,
T. A. W.
,
Eckert
,
C. M.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2011
, “
Engineering Change: An Overview and Perspective on the Literature
,”
Res. Eng. Des.
,
22
(
2
), pp.
103
124
.
11.
Hein
,
P. H.
,
Kames
,
E.
,
Chen
,
C.
, and
Morkos
,
B.
,
2024
, “
A Network Interference Approach to Analyzing Change Propagation in Requirements
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
6
), p.
061004
.
12.
Li
,
T.
,
Zhang
,
N.
,
Ren
,
H.
,
Liu
,
Q.
, and
Li
,
Y.
,
2022
, “
Design Change Propagation Routing in the Modular Product
,”
Adv. Eng. Inf.
,
54
, p.
101784
.
13.
Yan
,
D.
,
Yang
,
J.
,
Zhang
,
D.
,
Leng
,
J.
, and
Liu
,
Q.
, “
Digital Twin-Driven Parameter Change Propagation Path Optimization for Production Line Variant Design
,”
Int. J. Comput. Integr. Manuf.
,
37
(
10–11
), pp.
1318
1334
.
14.
Siddharth
,
L.
, and
Sarkar
,
P.
,
2018
, “
A Multiple-Domain Matrix Support to Capture Rationale for Engineering Design Changes
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021014
.
15.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
16.
Koh
,
E. C. Y.
,
Förg
,
A.
,
Kreimeyer
,
M.
, and
Lienkamp
,
M.
,
2015
, “
Using Engineering Change Forecast to Prioritise Component Modularisation
,”
Res. Eng. Des.
,
26
(
4
), pp.
337
353
.
17.
Sinha
,
K.
,
Han
,
S. Y.
, and
Suh
,
E. S.
,
2020
, “
Design Structure Matrix-Based Modularization Approach for Complex Systems With Multiple Design Constraints
,”
Syst. Eng.
,
23
(
2
), pp.
211
220
.
18.
Duran-Novoa
,
R.
,
Weigl
,
J. D.
,
Henz
,
M.
, and
Koh
,
E. C. Y.
,
2018
, “
Designing in Young Organisations: Engineering Change Propagation in a University Design Project
,”
Res. Eng. Des.
,
29
(
4
), pp.
489
506
.
19.
Li
,
R.
,
Yang
,
N.
,
Zhang
,
Y.
,
Liu
,
H.
, and
Zhang
,
M.
,
2021
, “
Impacts of Module–Module Aligned Patterns on Risk Cascading Propagation in Complex Product Development (CPD) Interdependent Networks
,”
Phys. A: Stat. Mech. Appl.
,
564
, p.
125531
.
20.
Albert
,
R.
, and
Barabási
,
A.-L.
,
2002
, “
Statistical Mechanics of Complex Networks
,”
Rev. Mod. Phys.
,
74
(
1
), p.
47
97
.
21.
Wang
,
M.
,
Chen
,
W.
,
Huang
,
Y.
,
Contractor
,
N. S.
, and
Fu
,
Y.
,
2016
, “
Modeling Customer Preferences Using Multidimensional Network Analysis in Engineering Design
,”
Des. Sci.
,
2
, p.
e11
.
22.
Guo
,
Y.
,
2023
, “
Towards the Efficient Generation of Variant Design in Product Development Networks: Network Nodes Importance Based Product Configuration Evaluation Approach
,”
J. Intell. Manuf.
,
34
(
2
), pp.
615
631
.
23.
Lee
,
C.-Y.
,
Chong
,
H.-Y.
,
Liao
,
P.-C.
, and
Wang
,
X.
,
2018
, “
Critical Review of Social Network Analysis Applications in Complex Project Management
,”
J. Manage. Eng.
,
34
(
2
), p.
04017061
.
24.
Lee
,
H.
,
Seol
,
H.
,
Sung
,
N.
,
Hong
,
Y. S.
, and
Park
,
Y.
,
2010
, “
An Analytic Network Process Approach to Measuring Design Change Impacts in Modular Products
,”
J. Eng. Des.
,
21
(
1
), pp.
75
91
.
25.
Li
,
Y. L.
, and
Zhao
,
W.
,
2014
, “
An Integrated Change Propagation Scheduling Approach for Product Design
,”
Concurrent Eng.-Res. Appl.
,
22
(
4
), pp.
347
360
.
26.
Hamraz
,
B.
,
Caldwell
,
N. H. M.
,
Ridgman
,
T. W.
, and
Clarkson
,
P. J.
,
2015
, “
FBS Linkage Ontology and Technique to Support Engineering Change Management
,”
Res. Eng. Des.
,
26
(
1
), pp.
3
35
.
27.
Yeasin
,
F. N.
,
Grenn
,
M.
, and
Roberts
,
B.
,
2020
, “
A Bayesian Networks Approach to Estimate Engineering Change Propagation Risk and Duration
,”
IEEE Trans. Eng. Manage.
,
67
(
3
), pp.
869
884
.
28.
Brahma
,
A.
, and
Wynn
,
D. C.
,
2021
, “
A Study on the Mechanisms of Change Propagation in Mechanical Design
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121401
.
29.
Ullah
,
I.
,
Tang
,
D.
,
Wang
,
Q.
, and
Yin
,
L.
,
2017
, “
Exploring Effective Change Propagation in a Product Family Design
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121101
.
30.
Yang
,
F.
, and
Duan
,
G. J.
,
2012
, “
Developing a Parameter Linkage-Based Method for Searching Change Propagation Paths
,”
Res. Eng. Des.
,
23
(
4
), pp.
353
372
.
31.
Ma
,
S. H.
,
Jiang
,
Z. L.
, and
Liu
,
W. P.
,
2016
, “
Evaluation of a Design Property Network-Based Change Propagation Touting Approach for Mechanical Product Development
,”
Adv. Eng. Inform.
,
30
(
4
), pp.
633
642
.
32.
Zhang
,
H. Z.
,
Ding
,
G. F.
,
Li
,
R.
,
Qin
,
S. F.
, and
Yan
,
K. Y.
,
2017
, “
Design Change Model for Effective Scheduling Change Propagation Paths
,”
Chin. J. Mech. Eng.
,
30
(
5
), pp.
1081
1090
.
33.
Ullah
,
I.
,
Tang
,
D.
,
Wang
,
Q.
, and
Yin
,
L.
,
2017
, “
Least Risky Change Propagation Path Analysis in Product Design Process
,”
Syst. Eng.
,
20
(
4
), pp.
379
391
.
34.
Dorigo
,
M.
,
Maniezzo
,
V.
, and
Colorni
,
A.
,
1996
, “
Ant System: Optimization by a Colony of Cooperating Agents
,”
IEEE Trans. Syst. Man Cybern. Part B (Cybernetics)
,
26
(
1
), pp.
29
41
.
35.
Yin
,
L.
,
Sun
,
Q.
,
Tang
,
D.
,
Xu
,
Y.
, and
Shao
,
L.
,
2022
, “
Requirement-Driven Engineering Change Management in Product Design
,”
Comput. Ind. Eng.
,
168
, p.
108053
.
36.
Ren
,
H.
,
Wang
,
Y.
,
Zhang
,
J.
,
Li
,
Y.
, and
Wang
,
W.
,
2024
, “
Research on Propagation Routing Optimisation of Product Design Change Considering Multi-domain Network Collaboration
,”
J. Eng. Des.
,
35
(
4
), pp.
430
459
.
37.
Agrawal
,
R.
, and
Srikant
,
R.
,
1994
, “
Fast Algorithms for Mining Association Rules
,”
Proceedings of 20th International Conference on Very Large Data Bases
,
Santiago, Chile
,
Sept. 12–15
, pp.
487
499
.
38.
Cheng
,
H.
, and
Chu
,
X.
,
2012
, “
A Network-Based Assessment Approach for Change Impacts on Complex Product
,”
J. Intell. Manuf.
,
23
(
4
), pp.
1419
1431
.
39.
Chen
,
D.
,
,
L.
,
Shang
,
M.-S.
,
Zhang
,
Y.-C.
, and
Zhou
,
T.
,
2012
, “
Identifying Influential Nodes in Complex Networks
,”
Phys. A: Stat. Mech. Appl.
,
391
(
4
), pp.
1777
1787
.
40.
Freeman
,
L. C.
,
1977
, “
A Set of Measures of Centrality Based on Betweenness
,”
Sociometry
,
40
(
1
), pp.
35
41
.
41.
Freeman
,
L. C.
,
2002
, “Centrality in Social Networks: Conceptual Clarification,”
Social Network: Critical Concepts in Sociology
, Vol.
1
,
J.
Scott
, ed.,
Routledge
,
London
, pp.
238
263
.
42.
Tan
,
Y.
,
Wu
,
J.
, and
Deng
,
H.
,
2006
, “
Evaluation Method for Node Importance Based on Node Contraction in Complex Networks
,”
Syst. Eng.-Theory Pract.
, (
6
), pp.
79
83+102
.
43.
Li
,
Y.
,
Li
,
M.
, and
Wang
,
Z.
,
2019
, “
Multi-source Design Change Propagation Path Optimization for Complex Product Based on Weighted and Directed Network Model
,”
J. Mech. Eng.
,
55
(
6
), pp.
213
222
.
44.
Ni
,
Y.
,
Li
,
Y.
, and
Zhang
,
N.
,
2023
, “
Optimizing Margins of Design Parameters to Reduce the Change Risk Toward Evolving Customer Requirements
,”
IEEE Trans. Eng. Manage.
,
71
, pp.
6133
6145
.
45.
Guodong
,
Y.
,
Yu
,
Y.
,
Xuefeng
,
Z.
, and
Chi
,
L.
,
2017
, “
Network-Based Analysis of Requirement Change in Customized Complex Product Development
,”
Int. J. Inf. Technol. Decis. Making
,
16
(
04
), pp.
1125
1149
.
You do not currently have access to this content.