Abstract

Modeling large spatial deflections of flexible beams has been one of the most challenging problems in the research of compliant mechanism. This study presents an approach called chained power series model for modeling large spatial defections of flexible beams with uniform rectangular cross section. This approach is based on the power series model developed in our previous work for modeling spatial deflections of rectangular beams in the intermediate deflection range. The chained power series model splits a rectangular beam into several elements and models each element by the power series model, and then, the deflections of all elements are assembled to form the deflection of the beam through transformations using quaternions. The effectiveness of the approach is demonstrated by comparing with the nonlinear finite element model preformed in ansys and the chained 3D pseudo-rigid-body model. Several examples are demonstrated to show the capability of the chained power series model for solving the deflections of rectangular beams in compliant mechanisms.

References

1.
Bai
,
R.
,
Awtar
,
S.
, and
Chen
,
G.
,
2019
, “
A Closed-Form Model for Nonlinear Spatial Deflections of Rectangular Beams in Intermediate Range
,”
Int. J. Mech. Sci.
,
160
, pp.
229
240
. 10.1016/j.ijmecsci.2019.06.042
2.
Kota
,
S.
,
Hetrick
,
J. A.
,
Osborn
,
R.
,
Paul
,
D.
,
Pendleton
,
E.
,
Flick
,
P.
, and
Tilmann
,
C.
,
2003
, “
Design and Application of Compliant Mechanisms for Morphing Aircraft Structures
,”
Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies
,
San Diego, CA
,
Mar. 3–6
, Vol.
5054
,
International Society for Optics and Photonics
, pp.
24
33
.
3.
Awtar
,
S.
,
Trutna
,
T. T.
,
Nielsen
,
J. M.
,
Abani
,
R.
, and
Geiger
,
J.
,
2010
, “
FlexdexTM: A Minimally Invasive Surgical Tool With Enhanced Dexterity and Intuitive Control
,”
ASME J. Med. Devices
,
4
(
3
), p.
035003
. 10.1115/1.4002234
4.
Shoup
,
T.
, and
McLarnan
,
C.
,
1971
, “
A Survey of Flexible Link Mechanisms Having Lower Pairs
,”
J. Mech.
,
6
(
1
), pp.
97
105
. 10.1016/0022-2569(71)90009-7
5.
Choueifati
,
J. G.
,
2007
, “
Design and Modeling of a Bistable Spherical Compliant Micromechanism
,” Master thesis, University of South Florida, Tampa, FL.
6.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fact)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
. 10.1016/j.precisioneng.2009.06.008
7.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fact). Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
. 10.1016/j.precisioneng.2009.06.007
8.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (Let) Joint
,”
Mech. Mach. Theory.
,
44
(
11
), pp.
2098
2109
. 10.1016/j.mechmachtheory.2009.05.015
9.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2017
, “
Design and Analysis of Outside-Deployed Lamina Emergent Joint (OD-LEJ)
,”
Mech. Mach. Theory.
,
114
, pp.
111
124
. 10.1016/j.mechmachtheory.2017.03.011
10.
Chen
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062303
. 10.1115/1.4039852
11.
Chen
,
G.
, and
Bai
,
R.
,
2016
, “
Modeling Large Spatial Deflections of Slender Bisymmetric Beams in Compliant Mechanisms Using Chained Spatial-Beam Constraint Model
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041011
. 10.1115/1.4032632
12.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
. 10.1115/1.4035220
13.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory.
,
119
, pp.
1
21
. 10.1016/j.mechmachtheory.2017.08.017
14.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
. 10.1115/1.4023558
15.
Xu
,
Q.
,
2011
, “
New Flexure Parallel-Kinematic Micropositioning System With Large Workspace
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
478
491
. 10.1109/TRO.2011.2173853
16.
Frisch-Fay
,
R.
,
1962
,
Flexible Bars
,
Butterworths
,
London
.
17.
Sen
,
S.
, and
Awtar
,
S.
,
2013
, “
A Closed-Form Nonlinear Model for the Constraint Characteristics of Symmetric Spatial Beams
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031003
. 10.1115/1.4023157
18.
Rasmussen
,
N. O.
,
Wittwer
,
J. W.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2006
, “
A 3d Pseudo-Rigid-Body Model for Large Spatial Deflections of Rectangular Cantilever Beams
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
,
American Society of Mechanical Engineers
, pp.
191
198
.
19.
Chimento
,
J.
,
Lusk
,
C.
, and
Alqasimi
,
A.
,
2014
, “
A 3-d Pseudo-Rigid Body Model for Rectangular Cantilever Beams With an Arbitrary Force End-Load
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
,
American Society of Mechanical Engineers
, p.
V05AT08A029
.
20.
Chase
,
R. P., Jr.
,
Todd
,
R. H.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
A 3-d Chain Algorithm With Pseudo-Rigid-Body Model Elements
,”
Mech. Based Design Struct. Mach.
,
39
(
1
), pp.
142
156
. 10.1080/15397734.2011.541783
21.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Load-Displacement Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081008
. 10.1115/1.4002005
22.
Ma
,
F.
, and
Chen
,
G.
,
2016
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
. 10.1115/1.4031028
23.
Chen
,
G.
,
Ma
,
F.
,
Hao
,
G.
, and
Zhu
,
W.
,
2019
, “
Modeling Large Deflections of Initially Curved Beams in Compliant Mechanisms Using Chained Beam Constraint Model
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011022
. 10.1115/1.4041585
24.
Hao
,
G.
,
Kong
,
X.
, and
Reuben
,
R. L.
,
2011
, “
A Nonlinear Analysis of Spatial Compliant Parallel Modules: Multi-Beam Modules
,”
Mech. Mach. Theory.
,
46
(
5
), pp.
680
706
. 10.1016/j.mechmachtheory.2010.12.007
25.
Nijenhuis
,
M.
,
Meijaard
,
J. P.
,
Mariappan
,
D.
,
Herder
,
J. L.
,
Brouwer
,
D. M.
, and
Awtar
,
S.
,
2017
, “
An Analytical Formulation for the Lateral Support Stiffness of a Spatial Flexure Strip
,”
ASME J. Mech. Des.
,
139
(
5
), p.
051401
. 10.1115/1.4035861
26.
Chen
,
G.
, and
Howell
,
L. L.
,
2009
, “
Two General Solutions of Torsional Compliance for Variable Rectangular Cross-Section Hinges in Compliant Mechanisms
,”
Precis. Eng.
,
33
(
3
), pp.
268
274
. 10.1016/j.precisioneng.2008.08.001
You do not currently have access to this content.