Abstract
An accurate modeling, simulation, and estimation of the wheel-terrain interaction and its effects on a robot movement plays a key role in control and navigation tasks, specially in constantly changing environments. We study the calibration of wheel slip models using Particle Markov Chain Monte Carlo methods to approximate the posterior distributions of their parameters. In contrast to classic identification approaches, considering the parameters as random variables allows to obtain a probability measure of the parameter estimations and subsequently propagate their uncertainty to wheel slip-related variables. Extensive simulation and experimental results showed that the proposed methodology can effectively get reliable posterior approximations from noisy sensor measurements in changing terrains. Validation tests also include the applicability assessment of the proposed methodology by comparing it with the integrated prediction error minimization methodology. Field results presented up to 66% of improvement in the robot motion prediction with the proposed calibration approach.