Abstract

In the recent past, the use of autonomous vehicles is becoming of relevant interest in several fields of application. In many cases, the use of articulated structures is preferred to single chassis robots for their peculiar modularity. Such vehicles are often built as an active front module and a rear one that is pulled passively or that can contribute to the vehicle traction when required. Understanding whether this contribution is convenient or not is the main matter of this paper. Two different mobile robots of different scales and purposes are taken into consideration. A dynamic model is presented and analyzed. An experimental validation of the model parameters is also presented in order to make it exploitable as a reliable analysis tool. At last, a simple yet effective actuation law is tested for both the considered robots to evaluate whether the contribution of the back module is beneficial or not to the whole machine maneuverability.

References

1.
Schneier
,
M.
,
Schneier
,
M.
, and
Bostelman
,
R.
,
2015
,
Literature Review of Mobile Robots for Manufacturing
,
US Department of Commerce, National Institute of Standards and Technology
,
Gaithersburg, MD
.
2.
Ortigoza
,
R. S.
,
Marcelino-Aranda
,
M.
,
Ortigoza
,
G. S.
,
Guzman
,
V. M. H.
,
Molina-Vilchis
,
M. A.
,
Saldana-Gonzalez
,
G.
,
Herrera-Lozada
,
J. C.
, and
Olguin-Carbajal
,
M.
,
2012
, “
Wheeled Mobile Robots: A Review
,”
IEEE Latin Am. Trans.
,
10
(
6
), pp.
2209
2217
.
3.
Song
,
T.
,
Xi
,
F. J.
,
Guo
,
S.
, and
Lin
,
Y.
,
2016
, “
Optimization of a Mobile Platform for a Wheeled Manipulator
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061007
.
4.
Wei
,
Z.
,
Song
,
G.
,
Qiao
,
G.
,
Zhang
,
Y.
, and
Sun
,
H.
,
2017
, “
Design and Implementation of a Leg–Wheel Robot: Transleg
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051001
.
5.
Quaglia
,
G.
,
Bruzzone
,
L.
,
Oderio
,
R.
, and
Razzoli
,
R. P.
,
2011
, “
Epi. q Mobile Robots Family
,”
ASME 2011 International Mechanical Engineering Congress and Exposition
,
Denver, CO
,
Nov. 11–17
, Vol.
54938
, pp.
1165
1172
.
6.
Quaglia
,
G.
, and
Nisi
,
M.
,
2015
, “
Design and Construction of a New Version of the Epi.q Ugv for Monitoring and Surveillance Tasks
,”
ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
, Vol.
57397
,
American Society of Mechanical Engineers
, p.
V04AT04A001
.
7.
Visconte
,
C.
,
Cavallone
,
P.
,
Carbonari
,
L.
,
Botta
,
A.
, and
Quaglia
,
G.
,
2020
, “Mechanism for the Locomotion Layout Reconfiguration of the Agri_q Mobile Robot,”
Advances in Service and Industrial Robotics. RAAD 2020. Mechanisms and Machine Science
,
S.
Zeghloul
,
M.
Laribi
, and
J.
Sandoval Arevalo
, eds.,
Springer
,
Cham
, pp.
390
399
.
8.
Cavallone
,
P.
,
Botta
,
A.
,
Carbonari
,
L.
,
Visconte
,
C.
, and
Quaglia
,
G.
,
2021
, “The Agri. q Mobile Robot: Preliminary Experimental Tests,”
Advances in Italian Mechanism Science. IFToMM ITALY 2020. Mechanisms and Machine Science
, Vol.
91
,
V.
Niola
, and
A.
Gasparetto
, eds.,
Springer
,
Cham
, pp.
524
532
.
9.
Quaglia
,
G.
,
Cavallone
,
P.
, and
Lenzo
,
B.
,
2019
, “On the Dynamic Analysis of a Novel Snake Robot: Preliminary Results,”
Advances in Italian Mechanism Science. IFToMM ITALY 2018. Mechanisms and Machine Science
, Vol.
68
,
G.
Carbone
, and
A.
Gasparetto
, eds.,
Springer
,
Cham
, pp.
275
285
.
10.
Quaglia
,
G.
, and
Cavallone
,
P.
,
2018
, “
Rese_q: Ugv for Rescue Tasks Functional Design
,”
ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
, Vol.
52033
,
American Society of Mechanical Engineers
, p.
V04AT06A057
.
11.
Kimura
,
H.
, and
Hirose
,
S.
,
2002
, “
Development of Genbu: Active Wheel Passive Joint Articulated Mobile Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Sept. 30–Oct. 4
, Vol.
1
,
IEEE
, pp.
823
828
.
12.
Tanaka
,
M.
,
Nakajima
,
M.
,
Suzuki
,
Y.
, and
Tanaka
,
K.
,
2018
, “
Development and Control of Articulated Mobile Robot for Climbing Steep Stairs
,”
IEEE/ASME Trans. Mechatron.
,
23
(
2
), pp.
531
541
.
13.
David
,
J.
, and
Manivannan
,
P.
,
2014
, “
Control of Truck-Trailer Mobile Robots: A Survey
,”
Intell. Serv. Robot.
,
7
(
4
), pp.
245
258
.
14.
Granosik
,
G.
,
2014
, “
Hypermobile Robots—The Survey
,”
J. Intell. Robot. Syst.
,
75
(
1
), pp.
147
169
.
15.
Petrov
,
P.
,
2010
, “
Nonlinear Backward Tracking Control of an Articulated Mobile Robot With Off-Axle Hitching
,”
ISPRA'10: Proceedings of the 9th WSEAS International Conference on Signal Processing, Robotics and Automation
,
Stevens Point, WI
, pp.
269
273
.
16.
Michałek
,
M.
,
2012
, “Tracking Control Strategy for the Standard N-trailer Mobile Robot - A Geometrically Motivated Approach,”
Robot Motion and Control 2011. Lecture Notes in Control and Information Sciences
, Vol.
422
,
K.
Kozłowski
, ed.,
Springer
,
London
, pp.
39
51
.
17.
Tanaka
,
M.
,
Nakajima
,
M.
, and
Tanaka
,
K.
,
2016
, “
Smooth Control of an Articulated Mobile Robot With Switching Constraints
,”
Adv. Robot.
,
30
(
1
), pp.
29
40
.
18.
Murugendran
,
B.
,
Transeth
,
A. A.
, and
Fjerdingen
,
S. A.
,
2009
, “
Modeling and Path-Following for a Snake Robot With Active Wheels
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
, IEEE, pp.
3643
3650
.
19.
Tanaka
,
M.
,
Tanaka
,
K.
, and
Matsuno
,
F.
,
2014
, “
Approximate Path-Tracking Control of Snake Robot Joints With Switching Constraints
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1633
1641
.
20.
Tanaka
,
M.
, and
Tanaka
,
K.
,
2016
, “
Singularity Analysis of a Snake Robot and an Articulated Mobile Robot With Unconstrained Links
,”
IEEE Trans. Control Syst. Technol.
,
24
(
6
), pp.
2070
2081
.
21.
Dhaouadi
,
R.
, and
Hatab
,
A. A.
,
2013
, “
Dynamic Modelling of Differential-Drive Mobile Robots Using Lagrange and Newton-Euler Methodologies: A Unified Framework
,”
Adv. Robot. Autom.
,
2
(
2
), pp.
1
7
.
22.
Corke
,
P. I.
, and
Ridley
,
P.
,
2001
, “
Steering Kinematics for a Center-Articulated Mobile Robot
,”
IEEE Trans. Rob. Autom.
,
17
(
2
), pp.
215
218
.
23.
Ali
,
S.
,
2017
, “
A Unified Dynamic Algorithm for Wheeled Multibody Systems With Passive Joints and Nonholonomic Constraints
,”
Multibody Syst. Dyn.
,
41
(
4
), pp.
317
346
.
24.
Classens
,
K.
,
Koopaee
,
M. J.
, and
Weiland
,
S.
,
2018
, “
Generalized Dynamical Modeling of 2-d Modular Snake Robots
,”
Eindhoven University of Technology
,
Eindhoven
, Internship Report.
25.
Botta
,
A.
,
Cavallone
,
P.
,
Carbonari
,
L.
,
Tagliavini
,
L.
, and
Quaglia
,
G.
,
2020
, “Modelling and Experimental Validation of Articulated Mobile Robots With Hybrid Locomotion System,”
Advances in Italian Mechanism Science. IFToMM ITALY 2020. Mechanisms and Machine Science
, Vol.
91
,
V.
Niola
, and
A.
Gasparetto
, eds.,
Springer
,
Cham
, pp.
758
767
.
You do not currently have access to this content.