Abstract

Soft pneumatic actuators (SPAs) play an important role in leading the development of soft robotics. However, due to the inherent characteristics of soft materials, the low driving force limits the application of SPAs. This study presents a high-force soft pneumatic bending actuator (SPBA) that consists of a spring, an eccentric silicone cylinder, and a limiting fiber. Based on the Neo-Hookean model, a theoretical model is established to predict the relationship between the bending angle and the pressure of SPBA. Furthermore, we characterize the performance of SPBA in terms of the bending capability, tip force, as well as response time. The results demonstrate the effectiveness of the theoretical model, as well as the high tip force (10.2 N) and fast response capability of SPBA. Finally, SPBAs are used to construct a three-finger soft gripper. The load capacity of the gripper is proofed, which indicates that the gripping force of the gripper increases with the pressure of the fingers and the diameter of the object. The gripping test of the gripper is performed. The result shows that the gripper with the pinching mode can grip objects of various sizes and shapes in the air and underwater, and the gripper with enveloping mode can grip objects with weight up to 1.25 kg.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
2.
Xiao
,
W.
,
Hu
,
D.
,
Chen
,
W.
,
Yang
,
G.
, and
Han
,
X.
,
2021
, “
A New Type of Soft Pneumatic Torsional Actuator With Helical Chambers for Flexible Machines
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011003
.
3.
Xu
,
Y.
,
Yan
,
D.
,
Zhang
,
K.
,
Li
,
X.
,
Xing
,
Y.
, and
Shao
,
L.-H.
,
2021
, “
Soft Robot Based on Hyperelastic Buckling Controlled by Discontinuous Magnetic Field
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011008
.
4.
Thuruthel
,
T. G.
,
Shih
,
B.
,
Laschi
,
C.
, and
Tolley
,
M. T.
,
2019
, “
Soft Robot Perception Using Embedded Soft Sensors and Recurrent Neural Networks
,”
Sci. Robot.
,
4
(
26
), p.
eaav1488
.
5.
Lotfiani
,
A.
,
Zhao
,
H.
,
Shao
,
Z.
, and
Yi
,
X.
,
2019
, “
Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011016
.
6.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robotm
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
7.
Park
,
J.
,
Lee
,
H.
,
Kee
,
H.
, and
Park
,
S.
,
2020
, “
Magnetically Steerable Manipulator With Variable Stiffness Using Graphene Polylactic Acid for Minimally Invasive Surgery
,”
Sensor. Actuat. A-Phys.
,
309
(
3
), p.
112032
.
8.
Sedal
,
A.
,
Bruder
,
D.
,
Bishop-Moser
,
J.
,
Vasudevan
,
R.
, and
Kota
,
S.
,
2018
, “
A Continuum Model for Fiber-Reinforced Soft Robot Actuators
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
024501
.
9.
Almubarak
,
Y.
,
Punnoose
,
M.
,
Maly
,
N. X.
,
Hamidi
,
A.
, and
Tadesse
,
Y.
,
2020
, “
KryptoJelly: A Jellyfish Robot With Confined, Adjustable Pre-Stress, and Easily Replaceable Shape Memory Alloy NiTi Actuators
,”
Smart Mater. Struct.
,
29
(
7
), p.
075011
.
10.
Chang
,
L.
,
Liu
,
Y.
,
Yang
,
Q.
,
Yu
,
L.
,
Liu
,
J.
,
Zhu
,
Z.
,
Lu
,
P.
,
Wu
,
Y.
, and
Hu
,
Y. L.
,
2018
, “
Ionic Electroactive Polymers Used in Bionic Robots: A Review
,”
J. Bionic Eng.
,
15
(
5
), pp.
765
782
.
11.
Li
,
M.
,
Jiang
,
Z.
,
An
,
N.
, and
Zhou
,
J.
,
2018
, “
Harnessing Programmed Holes in Hydrogel Bilayers to Design Soft Self-Folding Machines
,”
Int. J. Mech. Sci.
,
140
(
5
), pp.
271
278
.
12.
Hussain
,
I.
,
Al-Ketan
,
O.
,
Renda
,
F.
,
Malvezzi
,
M.
,
Prattichizzo
,
D.
,
Seneviratne
,
L.
,
Abu
,
A.-R. R. K.
, and
Gan
,
D.
,
2020
, “
Design and Prototyping Soft–Rigid Tendon-Driven Modular Grippers Using Interpenetrating Phase Composites Materials
,”
Int. J. Robot. Res.
,
39
(
14
), pp.
1635
1646
.
13.
Nishikawa
,
Y.
, and
Matsumoto
,
M.
,
2019
, “
A Design of Fully Soft Robot Actuated by Gas Liquid Phase Change
,”
Adv. Robotics
,
33
(
12
), pp.
567
575
.
14.
Qin
,
L.
,
Tang
,
Y.
,
Gupta
,
U.
, and
Zhu
,
J.
,
2018
, “
A Soft Robot Capable of 2D Mobility and Self-Sensing for Obstacle Detection and Avoidance
,”
Smart Mater. Struct.
,
27
(
4
), p.
045017
.
15.
Zhou
,
Y.
,
Headings
,
L. M.
, and
Dapino
,
M. J.
,
2021
, “
Modeling of Soft Robotic Grippers Integrated With Fluidic Prestressed Composite Actuators
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031001
.
16.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T. B.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE T. Robot.
,
31
(
3
), pp.
778
789
.
17.
Wang
,
J.
,
Fei
,
Y.
, and
Pang
,
W.
,
2019
, “
Design, Modeling, and Testing of a Soft Pneumatic Glove With Segmented PneuNets Bending Actuators
,”
IEEE/ASME T. Mech.
,
24
(
3
), pp.
990
1001
.
18.
Xie
,
Z.
,
Domel
,
A. G.
,
An
,
N.
,
Green
,
C.
,
Gong
,
Z.
,
Wang
,
T.
,
Knubben
,
E. M.
,
Weaver
,
J. C.
,
Bertoldi
,
K.
, and
Wen
,
L.
,
2020
, “
Octopus Arm-Inspired Tapered Soft Actuators With Suckers for Improved Grasping
,”
Soft Robot.
,
7
(
5
), pp.
639
648
.
19.
Tawk
,
C.
,
Spinks
,
G. M.
,
in het Panhuis
,
M.
, and
Alici
,
G.
,
2019
, “
3D Printable Linear Soft Vacuum Actuators: Their Modeling, Performance Quantification and Application in Soft Robotic Systems
,”
IEEE/ASME Trans. Mechatron.
,
24
(
5
), pp.
2118
2129
.
20.
Lotfiani
,
A.
,
Yi
,
X.
,
Shao
,
Z.
,
Zhao
,
H.
, and
Parkestani
,
A. N.
,
2021
, “
Analytical Modeling and Optimization of a Corrugated Soft Pneumatic Finger Considering the Performance of Pinch and Power Grasps
,”
Extreme Mech. Lett.
,
44
(
4
), p.
101215
.
21.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci. USA
,
114
(
1
), p.
51
56
.
22.
Guo
,
J.
,
Elgeneidy
,
K.
,
Xiang
,
C.
,
Lohse
,
N.
,
Justham
,
L.
, and
Rossiter
,
J.
,
2018
, “
Soft Pneumatic Grippers Embedded With Stretchable Electroadhesion
,”
Smart Mater. Struct.
,
27
(
5
), p.
055006
.
23.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
24.
Wang
,
T.
,
Ge
,
L.
, and
Gu
,
G.
,
2018
, “
Programmable Design of Soft Pneu-net Actuators With Oblique Chambers Can Generate Coupled Bending and Twisting Motions
,”
Sensor. Actuat. A-Phys.
,
271
(
3
), pp.
131
138
.
25.
Hu
,
W.
, and
Alici
,
G.
,
2020
, “
Bioinspired Three-Dimensional-Printed Helical Soft Pneumatic Actuators and Their Characterization
,”
Soft Robot.
,
7
(
3
), pp.
267
282
.
26.
Wang
,
Z.
,
Or
,
K.
, and
Hirai
,
S.
,
2020
, “
A Dual-Mode Soft Gripper for Food Packaging
,”
Robot. Auton. Syst.
,
125
(
3
), p.
103427
.
27.
Feng
,
H.
,
Sun
,
Y.
,
Todd
,
P. A.
, and
Lee
,
H. P.
,
2019
, “
Body Wave Generation for Anguilliform Locomotion Using a Fiber-Reinforced Soft Fluidic Elastomer Actuator Array Toward the Development of the Eel-Inspired Underwater Soft Robot
,”
Soft Robot.
,
7
(
2
), pp.
233
250
.
28.
Kurumaya
,
S.
,
Phillips
,
B. T.
,
Becker
,
K. P.
,
Rosen
,
M. H.
,
Gruber
,
D. F.
,
Galloway
,
K. C.
,
Suzumori
,
K.
, and
Wood
,
R. J.
,
2018
, “
A Modular Soft Robotic Wrist for Underwater Manipulation
,”
Soft Robot.
,
5
(
4
), pp.
399
409
.
29.
Wei
,
Y.
,
Chen
,
Y.
,
Ren
,
T.
,
Chen
,
Q.
,
Yan
,
C.
,
Yang
,
Y.
, and
Li
,
Y.
,
2016
, “
A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming
,”
Soft Robot.
,
3
(
3
), pp.
134
143
.
30.
Yang
,
C.
,
Kang
,
R.
,
Branson
,
D. T.
,
Chen
,
L.
, and
Dai
,
J. S.
,
2019
, “
Kinematics and Statics of Eccentric Soft Bending Actuators With External Payloads
,”
Mech. Mach. Theory
,
139
(
9
), pp.
526
541
.
31.
Li
,
H.
,
Yao
,
J.
,
Zhou
,
P.
,
Chen
,
X.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2020
, “
High-Force Soft Pneumatic Actuators Based on Novel Casting Method for Robotic Applications
,”
Sensor. Actuat. A-Phys.
,
306
(
5
), p.
111957
.
32.
Guo
,
X.-Y.
,
Li
,
W.-B.
,
Gao
,
Q.-H.
,
Yan
,
H.
,
Fei
,
Y.-Q.
, and
Zhang
,
W.-M.
,
2020
, “
Self-Locking Mechanism for Variable Stiffness Rigid–Soft Gripper
,”
Smart Mater. Struct.
,
29
(
3
), p.
035033
.
33.
Sun
,
T.
,
Chen
,
Y.
,
Han
,
T.
,
Jiao
,
C.
,
Lian
,
B.
, and
Song
,
Y.
,
2020
, “
A Soft Gripper With Variable Stiffness Inspired by Pangolin Scales, Toothed Pneumatic Actuator and Autonomous Controller
,”
Robot. Com-Int. Manuf.
,
61
(
2
), p.
101848
.
34.
Xie
,
M.
,
Zhu
,
M.
,
Yang
,
Z.
,
Okada
,
S.
, and
Kawamura
,
S.
,
2021
, “
Flexible Self-Powered Multifunctional Sensor for Stiffness-Tunable Soft Robotic Gripper by Multimaterial 3D Printing
,”
Nano Energy
,
79
(
1
), p.
105438
.
35.
Zhou
,
J.
,
Chen
,
Y.
,
Hu
,
Y.
,
Wang
,
Z.
,
Li
,
Y.
,
Gu
,
G.
, and
Liu
,
Y.
,
2020
, “
Adaptive Variable Stiffness Particle Phalange for Robust and Durable Robotic Grasping
,”
Soft Robot.
,
7
(
6
), pp.
743
757
.
36.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
C.-H.
,
2016
, “
High-Force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Robot.
,
3
(
3
), pp.
144
158
.
37.
Zhang
,
H.
,
Kumar
,
A. S.
,
Fuh
,
J. Y. H.
, and
Wang
,
M. Y.
,
2018
, “
Design and Development of a Topology-Optimized Three-Dimensional Printed Soft Gripper
,”
Soft Robot.
,
5
(
5
), pp.
650
661
.
38.
Wang
,
Z.
,
Wang
,
D.
,
Zhang
,
Y.
,
Liu
,
J.
,
Wen
,
L.
,
Xu
,
W.
, and
Zhang
,
Y.
,
2020
, “
A Three-Fingered Force Feedback Glove Using Fiber-Reinforced Soft Bending Actuators
,”
IEEE T. Ind. Electron.
,
67
(
9
), pp.
7681
7690
.
39.
Kandasamy
,
S.
,
Devaraj
,
H.
,
Stuart
,
L.
,
McDaid
,
A.
, and
Aw
,
K. C.
,
2019
, “
A Novel Varying Angle Fiber-Reinforced Elastomer as a Soft Pneumatic Bending Actuator
,”
Proceedings of the 2019 3rd International Conference on Automation, Control and Robots
,
Prague, Czech Republic
,
Oct. 11–13
, pp.
50
54
.
40.
Huang
,
W.
,
Xiao
,
J.
, and
Xu
,
Z.
,
2020
, “
A Variable Structure Pneumatic Soft Robot
,”
Sci. Rep.
,
10
(
1
), p.
18778
.
41.
Alici
,
G.
,
Canty
,
T.
,
Mutlu
,
R.
,
Hu
,
W.
, and
Sencadas
,
V.
,
2018
, “
Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers
,”
Soft Robot.
,
5
(
1
), pp.
24
35
.
42.
Park
,
W.
,
Seo
,
S.
, and
Bae
,
J.
,
2019
, “
A Hybrid Gripper With Soft Material and Rigid Structures
,”
IEEE Robot. Autom. Lett.
,
4
(
1
), pp.
65
72
.
43.
Abondance
,
S.
,
Teeple
,
C. B.
, and
Wood
,
R. J.
,
2020
, “
A Dexterous Soft Robotic Hand for Delicate In-Hand Manipulation
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
5502
5509
.
You do not currently have access to this content.