Abstract

The movable anchor points make reconfigurable cable-driven parallel robots (RCDPRs) advantageous over conventional cable-driven parallel robots with fixed anchor points, but the movable anchor points also introduce an inherent problem—reconfiguration planning. Scholars have proposed reconfiguration planning approaches for RCDPRs, taking into account the statics and kinematics of RCDPRs. However, a real-time reconfiguration planning approach that considers the dynamics of an RCDPR and is computationally efficient enough to be integrated into the RCDPR's dynamic controller is still not available in the literature yet. This paper develops a real-time reconfiguration planning approach for RCDPRs. A novel reconfiguration value function is defined to reflect the “value” of an RCDPR configuration and provide a reference index for the reconfiguration planning of an RCDPR. And then, the developed approach conducts reconfiguration planning based on the value of RCDPR configurations. The developed approach is computationally efficient, reducing the reconfiguration planning time by more than 93%, compared to single iteration of a box-constrained optimization-based reconfiguration planning approach. Such a high efficiency allows the developed approach to be integrated into an RCDPR's dynamic controller that usually runs with a high frequency. Integrating reconfiguration planning and dynamic control enhances the control performance of the RCDPR. To verify the effectiveness of the developed approach and the integration of reconfiguration planning and dynamic control for RCDPRs, a case study of an RCDPR with seven cables and four movable anchor points is conducted.

References

1.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I. M.
,
2006
, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
1
), pp.
53
69
.
2.
Tang
,
X.
,
2014
, “
An Overview of the Development for Cable-Driven Parallel Manipulator
,”
Adv. Mech. Eng.
,
6
, p.
823028
.
3.
Merlet
,
J.-P.
,
2013
, “Wire-Driven Parallel Robot: Open Issues,”
CISM International Centre for Mechanical Sciences
, Vol.
544
,
Springer
,
Vienna, Switzerland
, pp.
3
10
.
4.
Patel
,
Y. D.
, and
George
,
P. M.
,
2012
, “
Parallel Manipulators Applications—A Survey
,”
Mod. Mech. Eng.
,
2
(
3
), pp.
57
64
.
5.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2016
, “
Discrete Reconfiguration Planning for Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
100
, pp.
313
337
.
6.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-Cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Robot.
,
34
(
5
), pp.
1266
1279
.
7.
Raman
,
A.
,
Schmid
,
M.
, and
Krovi
,
V.
,
2020
, “
Stiffness Modulation for a Planar Mobile Cable-Driven Parallel Manipulators via Structural Reconfiguration
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
.
8.
Anson
,
M.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2017
, “
Orientation Workspace and Stiffness Optimization of Cable-Driven Parallel Manipulators With Base Mobility
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031011
.
9.
Rasheed
,
T.
,
Long
,
P.
, and
Caro
,
S.
,
2020
, “
Wrench-Feasible Workspace of Mobile Cable-Driven Parallel Robots
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031009
.
10.
Li
,
Z.
,
Erskine
,
J.
,
Caro
,
S.
, and
Chriette
,
A.
,
2020
, “
Design and Control of a Variable Aerial Cable Towed System
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
636
643
.
11.
Jamshidifar
,
H.
, and
Khajepour
,
A.
,
2020
, “
Static Workspace Optimization of Aerial Cable Towed Robots With Land-Fixed Winches
,”
IEEE Trans. Robot.
,
36
(
5
), pp.
1603
1610
.
12.
Zanotto
,
D.
,
Rosati
,
G.
,
Minto
,
S.
, and
Rossi
,
A.
,
2014
, “
Sophia-3: A Semiadaptive Cable-Driven Rehabilitation Device With a Tilting Working Plane
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
974
979
.
13.
Zhou
,
X.
,
Tang
,
C. P.
, and
Krovi
,
V.
,
2012
, “
Analysis Framework for Cooperating Mobile Cable Robots
,”
IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
, pp.
3128
3133
.
14.
Nguyen
,
D. Q.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2014
, “
On the Analysis of Large-Dimension Reconfigurable Suspended Cable-Driven Parallel Robots
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
, pp.
5728
5735
.
15.
Trautwein
,
F.
,
Reichenbach
,
T.
,
Pott
,
A.
, and
Verl
,
A.
,
2021
, “Workspace Planning for in-Operation-Reconfiguration of Cable-Driven Parallel Robots,”
Mech. Mach. Sci.
, Vol.
104
,
Springer
,
Cham, Switzerland
, pp.
182
193
.
16.
Khosravi
,
M.
, and
Taghirad
,
H.
,
2014
, “
Robust PID Control of Fully-Constrained Cable Driven Parallel Robots
,”
Mechatronics
,
24
(
2
), pp.
87
97
.
17.
Korayem
,
M. H.
,
Yousefzadeh
,
M.
, and
Beyranvand
,
B.
,
2017
, “
Dynamics and Control of a 6-DOF Cable-Driven Parallel Robot With Visco-Elastic Cables in Presence of Measurement Noise
,”
J. Intell. Robot. Syst.
,
88
(
1
), pp.
73
95
.
18.
Jia
,
H.
,
Shang
,
W.
,
Xie
,
F.
,
Zhang
,
B.
, and
Cong
,
S.
,
2020
, “
Second-Order Sliding-Mode-Based Synchronization Control of Cable-Driven Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
383
394
.
19.
Shang
,
W.
,
Zhang
,
B.
,
Cong
,
S.
, and
Lou
,
Y.
,
2020
, “
Dual-Space Adaptive Synchronization Control of Redundantly-Actuated Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
152
, pp.
1
19
.
20.
Chellal
,
R.
,
Cuvillon
,
L.
, and
Laroche
,
E.
,
2017
, “
Model Identification and Vision-Based H∞ Position Control of 6-DOF Cable-Driven Parallel Robots
,”
Int. J. Control.
,
90
(
4
), pp.
684
701
.
21.
Masone
,
C.
,
Bülthoff
,
H. H.
, and
Stegagno
,
P.
,
2016
, “
Cooperative Transportation of a Payload Using Quadrotors: A Reconfigurable Cable-Driven Parallel Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
, IEEE, pp.
1623
1630
.
22.
Kim
,
M.
,
Chen
,
T.
,
Chen
,
T.
, and
Collins
,
S. H.
,
2018
, “
An Ankle–Foot Prosthesis Emulator With Control of Plantarflexion and Inversion–Eversion Torque
,”
IEEE Trans. Robot.
,
34
(
5
), pp.
1183
1194
.
23.
Xia
,
Q.
,
Liu
,
S.
,
Guo
,
M.
,
Wang
,
H.
,
Zhou
,
Q.
, and
Zhang
,
X.
,
2021
, “
Multi-UAV Trajectory Planning Using Gradient-Based Sequence Minimal Optimization
,”
Rob. Auton. Syst.
,
137
, p.
103728
.
24.
Singh
,
S.
,
Majumdar
,
A.
,
Slotine
,
J. J.
, and
Pavone
,
M.
,
2017
, “
Robust Online Motion Planning Via Contraction Theory and Convex Optimization
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
, pp.
5883
5890
.
25.
Xu
,
J.
, and
Park
,
K. S.
,
2020
, “
A Real-Time Path Planning Algorithm for Cable-Driven Parallel Robots in Dynamic Environment Based on Artificial Potential Guided RRT
,”
Microsyst. Technol.
,
26
(
11
), pp.
3533
3546
.
26.
Diao
,
X.
, and
Ma
,
O.
,
2009
, “
Vibration Analysis of Cable-Driven Parallel Manipulators
,”
Multibody Syst. Dyn.
,
21
(
4
), pp.
347
360
.
27.
Xiong
,
H.
,
Zhang
,
L.
, and
Diao
,
X.
,
2020
, “
A Learning-Based Control Framework for Cable-Driven Parallel Robots With Unknown Jacobians
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
234
(
9
), pp.
1024
1036
.
28.
Hussein
,
H.
,
Santos
,
J. C.
,
Izard
,
J.-B.
, and
Gouttefarde
,
M.
,
2020
, “
Smallest Maximum Cable Tension Determination for Cable-Driven Parallel Robots
,”
IEEE Trans. Robot.
,
37
(
4
), pp.
1
20
.
29.
Xiong
,
H.
, and
Diao
,
X.
,
2018
, “
Geometric Isotropy Indices for Workspace Analysis of Parallel Manipulators
,”
Mech. Mach. Theory
,
128
, pp.
648
662
.
30.
Angeles
,
J.
,
2014
,
Fundamentals of Robotic Mechanical Systems
,
Springer
,
Cham, Switzerland
.
31.
Youssef
,
K.
, and
Otis
,
M. J.-D.
,
2020
, “
Reconfigurable Fully Constrained Cable Driven Parallel Mechanism for Avoiding Interference Between Cables
,”
Mech. Mach. Theory
,
148
, p.
103781
.
32.
Li
,
Z.
,
Xue
,
S.
,
Lin
,
W.
, and
Tong
,
M.
,
2018
, “
Training a Robust Reinforcement Learning Controller for the Uncertain System Based on Policy Gradient Method
,”
Neurocomputing.
,
316
, pp.
313
321
.
33.
Chen
,
Z.
,
Cao
,
F.
, and
Hu
,
J.
,
2015
, “
Approximation by Network Operators With Logistic Activation Functions
,”
Appl. Math. Comput.
,
256
, pp.
565
571
.
34.
Ghasemi
,
A.
,
Eghtesad
,
M.
, and
Farid
,
M.
,
2010
, “
Neural Network Solution for Forward Kinematics Problem of Cable Robots
,”
J. Intell. Robot. Syst.
,
60
(
2
), pp.
201
215
.
35.
Asl
,
H. J.
, and
Janabi-Sharifi
,
F.
,
2017
, “
Adaptive Neural Network Control of Cable-Driven Parallel Robots With Input Saturation
,”
Eng. Appl. Artif. Intell.
,
65
, pp.
252
260
.
36.
Chablat
,
D.
,
Wenger
,
P.
,
Majou
,
F.
, and
Merlet
,
J.-P.
,
2004
, “
An Interval Analysis Based Study for the Design and the Comparison of Three-Degrees-of-Freedom Parallel Kinematic Machines
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
615
624
.
37.
Lou
,
Y.
,
Zhang
,
Y.
,
Huang
,
R.
,
Chen
,
X.
, and
Li
,
Z.
,
2014
, “
Optimization Algorithms for Kinematically Optimal Design of Parallel Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
2
), pp.
574
584
.
38.
Koenig
,
N.
, and
Howard
,
A.
,
2004
, “
Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Sendai, Japan
, Vol. 3, pp.
2149
2154
.
39.
Okoli
,
F.
,
Lang
,
Y.
,
Kermorgant
,
O.
, and
Caro
,
S.
,
2019
, “Cable-Driven Parallel Robot Simulation Using Gazebo and ROS,”
CISM International Centre for Mechanical Sciences
, Vol.
584
,
Springer
,
Cham, Switzerland
, pp.
288
295
.
40.
Xiong
,
H.
,
Ma
,
T.
,
Zhang
,
L.
, and
Diao
,
X.
,
2020
, “
Comparison of End-to-End and Hybrid Deep Reinforcement Learning Strategies for Controlling Cable-Driven Parallel Robots
,”
Neurocomputing
,
377
, pp.
73
84
.
41.
Bouzid
,
Y.
,
Siguerdidjane
,
H.
,
Bestaoui
,
Y.
, and
Zareb
,
M.
,
2017
, “
Energy Based 3D Autopilot for VTOL UAV Under Guidance & Navigation Constraints
,”
J. Intell. Robot. Syst.
,
87
(
2
), pp.
341
362
.
42.
Haus
,
T.
,
Orsag
,
M.
, and
Bogdan
,
S.
,
2017
, “
Mathematical Modelling and Control of an Unmanned Aerial Vehicle With Moving Mass Control Concept
,”
J. Intell. Robot. Syst.
,
88
(
2–4
), pp.
1
28
.
43.
Loquercio
,
A.
,
Kaufmann
,
E.
,
Ranftl
,
R.
,
Dosovitskiy
,
A.
,
Koltun
,
V.
, and
Scaramuzza
,
D.
,
2020
, “
Deep Drone Racing: From Simulation to Reality With Domain Randomization
,”
IEEE Trans. Robot.
,
36
(
1
), pp.
1
14
.
44.
Michael
,
N.
,
Fink
,
J.
, and
Kumar
,
V.
,
2011
, “
Cooperative Manipulation and Transportation With Aerial Robots
,”
Auton. Robots.
,
30
(
1
), pp.
73
86
.
45.
Gouttefarde
,
M.
,
Lamaury
,
J.
,
Reichert
,
C.
, and
Bruckmann
,
T.
,
2015
, “
A Versatile Tension Distribution Algorithm for n-DOF Parallel Robots Driven by n+2 Cables
,”
IEEE Trans. Robot.
,
31
(
6
), pp.
1444
1457
.
46.
Ouyang
,
B.
, and
Shang
,
W.
,
2016
, “
Rapid Optimization of Tension Distribution for Cable-Driven Parallel Manipulators With Redundant Cables
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
231
238
.
47.
Ueland
,
E.
,
Sauder
,
T.
, and
Skjetne
,
R.
,
2021
, “
Optimal Force Allocation for Overconstrained Cable-Driven Parallel Robots: Continuously Differentiable Solutions With Assessment of Computational Efficiency
,”
IEEE Trans. Robot.
,
37
(
2
), pp.
659
666
.
You do not currently have access to this content.