Abstract

In this article, we investigate the position-access workspace estimation of slender soft manipulators controlled via arranged bounded actuators. For this, we implement a so-called forward-backward approach on the mathematical model of the investigated soft robot deduced via the adopted Discrete Cosserat method. The proposed methodology is validated on several planar and spatial slender soft manipulators’ configurations, where we show its advantage of reducing computation complexity for estimating the workspace, compared to traditional forward approach.

References

1.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
2.
Della Santina
,
C.
,
Katzschmann
,
R. K.
,
Biechi
,
A.
, and
Rus
,
D.
,
2018
, “
Dynamic Control of Soft Robots Interacting With the Environment
,”
2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, IEEE, pp.
46
53
.
3.
Wu
,
K.
, and
Zheng
,
G.
,
2021
, “
FEM-Based Gain-Scheduling Control of a Soft Trunk Robot
,”
IEEE Rob. Auto. Lett.
,
6
(
2
), pp.
3081
3088
.
4.
Hiller
,
J.
, and
Lipson
,
H.
,
2011
, “
Automatic Design and Manufacture of Soft Robots
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
457
466
.
5.
Haug
,
E. J.
,
Luh
,
C. -M.
,
Adkins
,
F. A.
, and
Wang
,
J. -Y.
,
1996
, “
Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces
,”
J. Mech. Des.
,
118
(
2
), pp.
228
234
.
6.
Abdel-Malek
,
K.
, and
Yeh
,
H.-J.
,
1997
, “
Analytical Boundary of the Workspace for General 3-dof Mechanisms
,”
Int. J. Rob. Res.
,
16
(
2
), pp.
198
213
.
7.
Snyman
,
J.
,
Du Plessis
,
L.
, and
Duffy
,
J.
,
2000
, “
An Optimization Approach to the Determination of the Boundaries of Manipulator Workspaces
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
447
456
.
8.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2010
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
9.
Gurtin
,
M. E.
,
1981
,
An Introduction to Continuum Mechanics
,
Academic Press
,
New York
.
10.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
,
Springer Science & Business Media
,
Dordrecht
.
11.
Webster III
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
12.
Duriez
,
C.
,
2013
, “
Control of Elastic Soft Robots Based on Real-Time Finite Element Method
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
3982
3987
.
13.
Renda
,
F.
,
Boyer
,
F.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2018
, “
Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics
,”
IEEE Trans. Rob.
,
34
(
6
), pp.
1518
1533
.
14.
Burgner-Kahrs
,
J.
,
Gilbert
,
H. B.
,
Granna
,
J.
,
Swaney
,
P. J.
, and
Webster
,
R. J.
,
2014
, “
Workspace Characterization for Concentric Tube Continuum Robots
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, IEEE, pp.
1269
1275
.
15.
Cao
,
K.
,
Kang
,
R.
,
Branson, III
,
D. T.
,
Geng
,
S.
,
Song
,
Z.
, and
Dai
,
J. S.
,
2017
, “
Workspace Analysis of Tendon-Driven Continuum Robots Based on Mechanical Interference Identification
,”
ASME J. Mech. Des.
,
139
(
6
), p.
062303
.
16.
Walid
,
A.
,
Zheng
,
G.
,
Kruszewski
,
A.
, and
Renda
,
F.
,
2022
, “
Discrete Cosserat Method for Soft Manipulators Workspace Estimation: An Optimization-Based Approach
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011012
.
17.
Amehri
,
W.
,
Zheng
,
G.
, and
Kruszewski
,
A.
,
2021
, “
Workspace Boundary Estimation for Soft Manipulators Using a Continuation Approach
,”
IEEE Rob. Auto. Lett.
,
6
(
4
), pp.
7169
7176
.
18.
Amehri
,
W.
,
Zheng
,
G.
, and
Kruszewski
,
A.
,
2022
, “
FEM-Based Reachable Workspace Estimation of Soft Robots using an Interval Analysis Approach
,”
Soft Robot.
19.
Jaulin
,
L.
,
Kieffer
,
M.
,
Didrit
,
O.
, and
Walter
,
E.
,
2001
, “Applied Interval Analysis,”
Applied Interval Analysis
,
L.
Jaulin
,
M.
Kieffer
,
O.
Didrit
, and
E.
Walter
, eds.,
Springer
,
London
, pp.
11
43
.
20.
Renda
,
F.
,
Armanini
,
C.
,
Lebastard
,
V.
,
Candelier
,
F.
, and
Boyer
,
F.
,
2020
, “
A Geometric Variable-Strain Approach for Static Modeling of Soft Manipulators With Tendon and Fluidic Actuation
,”
IEEE Rob. Auto. Lett.
,
5
(
3
), pp.
4006
4013
.
21.
Zheng
,
G.
,
Efimov
,
D.
, and
Perruquetti
,
W.
,
2016
, “
Design of Interval Observer for a Class of Uncertain Unobservable Nonlinear Systems
,”
Automatica
,
63
, pp.
167
174
.
You do not currently have access to this content.