Abstract
In this article, we investigate the position-access workspace estimation of slender soft manipulators controlled via arranged bounded actuators. For this, we implement a so-called forward-backward approach on the mathematical model of the investigated soft robot deduced via the adopted Discrete Cosserat method. The proposed methodology is validated on several planar and spatial slender soft manipulators’ configurations, where we show its advantage of reducing computation complexity for estimating the workspace, compared to traditional forward approach.
Issue Section:
Research Papers
References
1.
Rus
, D.
, and Tolley
, M. T.
, 2015
, “Design, Fabrication and Control of Soft Robots
,” Nature
, 521
(7553
), pp. 467
–475
. 2.
Della Santina
, C.
, Katzschmann
, R. K.
, Biechi
, A.
, and Rus
, D.
, 2018
, “Dynamic Control of Soft Robots Interacting With the Environment
,” 2018 IEEE International Conference on Soft Robotics (RoboSoft)
, Livorno, Italy
, Apr. 24–28
, IEEE, pp. 46
–53
.3.
Wu
, K.
, and Zheng
, G.
, 2021
, “FEM-Based Gain-Scheduling Control of a Soft Trunk Robot
,” IEEE Rob. Auto. Lett.
, 6
(2
), pp. 3081
–3088
. 4.
Hiller
, J.
, and Lipson
, H.
, 2011
, “Automatic Design and Manufacture of Soft Robots
,” IEEE Trans. Rob.
, 28
(2
), pp. 457
–466
. 5.
Haug
, E. J.
, Luh
, C. -M.
, Adkins
, F. A.
, and Wang
, J. -Y.
, 1996
, “Numerical Algorithms for Mapping Boundaries of Manipulator Workspaces
,” J. Mech. Des.
, 118
(2
), pp. 228
–234
. 6.
Abdel-Malek
, K.
, and Yeh
, H.-J.
, 1997
, “Analytical Boundary of the Workspace for General 3-dof Mechanisms
,” Int. J. Rob. Res.
, 16
(2
), pp. 198
–213
. 7.
Snyman
, J.
, Du Plessis
, L.
, and Duffy
, J.
, 2000
, “An Optimization Approach to the Determination of the Boundaries of Manipulator Workspaces
,” ASME J. Mech. Des.
, 122
(4
), pp. 447
–456
. 8.
Gouttefarde
, M.
, Daney
, D.
, and Merlet
, J.-P.
, 2010
, “Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,” IEEE Trans. Rob.
, 27
(1
), pp. 1
–13
. 9.
Gurtin
, M. E.
, 1981
, An Introduction to Continuum Mechanics
, Academic Press
, New York
.10.
Merlet
, J.-P.
, 2006
, Parallel Robots
, Springer Science & Business Media
, Dordrecht
.11.
Webster III
, R. J.
, and Jones
, B. A.
, 2010
, “Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,” Int. J. Rob. Res.
, 29
(13
), pp. 1661
–1683
. 12.
Duriez
, C.
, 2013
, “Control of Elastic Soft Robots Based on Real-Time Finite Element Method
,” 2013 IEEE International Conference on Robotics and Automation
, Karlsruhe, Germany
, May 6–10
, IEEE, pp. 3982
–3987
.13.
Renda
, F.
, Boyer
, F.
, Dias
, J.
, and Seneviratne
, L.
, 2018
, “Discrete Cosserat Approach for Multisection Soft Manipulator Dynamics
,” IEEE Trans. Rob.
, 34
(6
), pp. 1518
–1533
. 14.
Burgner-Kahrs
, J.
, Gilbert
, H. B.
, Granna
, J.
, Swaney
, P. J.
, and Webster
, R. J.
, 2014
, “Workspace Characterization for Concentric Tube Continuum Robots
,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Chicago, IL
, Sept. 14–18
, IEEE, pp. 1269
–1275
.15.
Cao
, K.
, Kang
, R.
, Branson, III
, D. T.
, Geng
, S.
, Song
, Z.
, and Dai
, J. S.
, 2017
, “Workspace Analysis of Tendon-Driven Continuum Robots Based on Mechanical Interference Identification
,” ASME J. Mech. Des.
, 139
(6
), p. 062303
. 16.
Walid
, A.
, Zheng
, G.
, Kruszewski
, A.
, and Renda
, F.
, 2022
, “Discrete Cosserat Method for Soft Manipulators Workspace Estimation: An Optimization-Based Approach
,” ASME J. Mech. Rob.
, 14
(1
), p. 011012
. 17.
Amehri
, W.
, Zheng
, G.
, and Kruszewski
, A.
, 2021
, “Workspace Boundary Estimation for Soft Manipulators Using a Continuation Approach
,” IEEE Rob. Auto. Lett.
, 6
(4
), pp. 7169
–7176
. 18.
Amehri
, W.
, Zheng
, G.
, and Kruszewski
, A.
, 2022
, “FEM-Based Reachable Workspace Estimation of Soft Robots using an Interval Analysis Approach
,” Soft Robot.
19.
Jaulin
, L.
, Kieffer
, M.
, Didrit
, O.
, and Walter
, E.
, 2001
, “Applied Interval Analysis,” Applied Interval Analysis
, L.
Jaulin
, M.
Kieffer
, O.
Didrit
, and E.
Walter
, eds., Springer
, London
, pp. 11
–43
.20.
Renda
, F.
, Armanini
, C.
, Lebastard
, V.
, Candelier
, F.
, and Boyer
, F.
, 2020
, “A Geometric Variable-Strain Approach for Static Modeling of Soft Manipulators With Tendon and Fluidic Actuation
,” IEEE Rob. Auto. Lett.
, 5
(3
), pp. 4006
–4013
. 21.
Zheng
, G.
, Efimov
, D.
, and Perruquetti
, W.
, 2016
, “Design of Interval Observer for a Class of Uncertain Unobservable Nonlinear Systems
,” Automatica
, 63
, pp. 167
–174
. Copyright © 2022 by ASME
You do not currently have access to this content.