Abstract

This article presents a modified evolutionary topology optimization method for designing compliant constant force mechanisms (CFMs). CFM is defined as the mechanism that can generate constant force in the desired input displacement range, which is known as a constant force range. The force variation, i.e., fluctuation of output forces over the constant force range, is a critical parameter that reflects the stability of the output force. The key idea of the new method is that the design variables are increased or decreased for a certain small value instead of being changed between 0 (or xmin) and 1 in other evolutionary structural optimization (ESO) methods. As the CFMs have to experience a large deformation when it works, the influence of the nonlinearity needs to be considered. An additive hyperelasticity technique is utilized to alleviate the instability of the finite element analysis, which is introduced by the low-stiffness elements. The numerical examples show that the proposed design method can generate CFMs with desired constant force range and aspect ratio. The optimized CFM is manufactured by 3D printing, and the experimental result indicates that it can output an almost constant force (force variation 2%) in a large relative constant force range (56.7%).

References

1.
Wei
,
Y.
, and
Xu
,
Q.
,
2015
, “
An Overview of Micro-Force Sensing Techniques
,”
Sens. Actuators, A
,
234
, pp.
359
374
.
2.
Xie
,
Y.
,
Sun
,
D.
,
Tse
,
H. Y. G.
,
Liu
,
C.
, and
Cheng
,
S. H.
,
2011
, “
Force Sensing and Manipulation Strategy in Robot-Assisted Microinjection on Zebrafish Embryos
,”
IEEE/ASME Trans. Mechatron.
,
16
(
6
), pp.
1002
1010
.
3.
Jung
,
S.
,
Hsia
,
T. C.
, and
Bonitz
,
R. G.
,
2004
, “
Force Tracking Impedance Control of Robot Manipulators Under Unknown Environment
,”
IEEE Trans. Control Syst. Technol.
,
12
(
3
), pp.
474
483
.
4.
Zang
,
H.
,
Zhang
,
X.
,
Zhu
,
B.
, and
Fatikow
,
S.
,
2019
, “
Recent Advances in Non-Contact Force Sensors Used for Micro/nano Manipulation
,”
Sens. Actuators, A
,
296
, pp.
155
177
.
5.
Xu
,
Q.
,
2017
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011006
.
6.
Kamata
,
M.
,
Yamazaki
,
S.
,
Tanise
,
Y.
,
Yamada
,
Y.
, and
Nakamura
,
T.
,
2018
, “
Morphological Change in Peristaltic Crawling Motion of a Narrow Pipe Inspection Robot Inspired by Earthworm’s Locomotion
,”
Adv. Robot.
,
32
(
7
), pp.
386
397
.
7.
Yang
,
Z.-W.
, and
Lan
,
C.-C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
.
8.
Bilancia
,
P.
, and
Berselli
,
G.
,
2020
, “
Design and Testing of a Monolithic Compliant Constant Force Mechanism
,”
Smart Mater. Struct.
,
29
(
4
), p.
044001
.
9.
Lambert
,
P.
,
Herder
,
J. L.
,
Wenger
,
P.
, and
Flores
,
P.
,
2017
,
An Adjustable Constant Force Mechanism Using Pin Joints and Springs
,
Springer International Publishing
,
Cham
, pp.
453
461
.
10.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Testing of a Flexure-Based Constant-Force Stage for Biological Cell Micromanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1114
1126
.
11.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
.
12.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design of a Flexure-Based Constant-Force Xy Precision Positioning Stage
,”
Mech. Mach. Theory
,
108
, pp.
1
13
.
13.
Howell
,
L. L.
,
2013
Compliant Mechanisms
,
McCarthy
,
J. M.
, ed.,
Springer
,
London
, pp.
189
216
.
14.
Zhang
,
H.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
A Novel Flexural Lamina Emergent Spatial Joint
,”
Mech. Mach. Theory
,
142
, p.
103582
.
15.
Miao
,
Y.
, and
Zheng
,
J.
,
2020
, “
Optimization Design of Compliant Constant-Force Mechanism for Apple Picking Actuator
,”
Comput. Electron. Agric.
,
170
, p.
105232
.
16.
Wei
,
Y.
, and
Xu
,
Q.
,
2022
, “
Design of a New Passive End-Effector Based on Constant-Force Mechanism for Robotic Polishing
,”
Robot. Comput. Integr. Manuf.
,
74
, p.
102278
.
17.
Liu
,
C.-H.
,
Chung
,
F.-M.
, and
Ho
,
Y.-P.
,
2021
, “
Topology Optimization for Design of a 3d-Printed Constant-Force Compliant Finger
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
1828
1836
.
18.
Zhang
,
X.
,
Wang
,
G.
, and
Xu
,
Q.
,
2018
, “
Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism
,”
Actuators
,
7
(
4
), p.
65
.
19.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Heidelberg
.
20.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
21.
Zhu
,
B.
,
Zhang
,
X.
,
Li
,
H.
,
Liang
,
J.
,
Wang
,
R.
,
Li
,
H.
, and
Nishiwaki
,
S.
,
2021
, “
An 89-Line Code for Geometrically Nonlinear Topology Optimization Written in Freefem
,”
Struct. Multidiscipl. Optim.
,
63
(
2
), pp.
1015
1027
.
22.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
J. M.
McCarthy
, ed.,
Springer
,
London
, pp.
189
216
.
23.
Zhu
,
B.
,
Zhang
,
X.
,
Liu
,
M.
,
Chen
,
Q.
, and
Li
,
H.
,
2019
, “
Topological and Shape Optimization of Flexure Hinges for Designing Compliant Mechanisms Using the Level Set Method
,”
Chinese J. Mech. Eng.
,
32
(
1
), p.
13
.
24.
Wang
,
R.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2021
, “
A Projective Transformation-Based Topology Optimization Using Moving Morphable Components
,”
Comput. Methods Appl. Mech. Eng.
,
376
, p.
113646
.
25.
Liu
,
M.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2016
, “
Design of Flexure Hinges Based on Stress-Constrained Topology Optimization
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
24
), pp.
4635
4645
.
26.
Liu
,
M.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2017
, “
Design and Analysis of a Multi-Notched Flexure Hinge for Compliant Mechanisms
,”
Precis. Eng.
,
48
, pp.
292
304
.
27.
Zhu
,
B.
,
Chen
,
Q.
,
Li
,
H.
,
Zhang
,
H.
, and
Zhang
,
X.
,
2019
, “
Design of Planar Large-Deflection Compliant Mechanisms With Decoupled Multi-Input-Output Using Topology Optimization
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031015
.
28.
Jin
,
M.
, and
Zhang
,
X.
,
2016
, “
A New Topology Optimization Method for Planar Compliant Parallel Mechanisms
,”
Mech. Mach. Theory
,
95
, pp.
42
58
.
29.
Wang
,
R.
,
Zhang
,
X.
,
Zhu
,
B.
,
Zhang
,
H.
,
Chen
,
B.
, and
Wang
,
H.
,
2020
, “
Topology Optimization of a Cable-Driven Soft Robotic Gripper
,”
Struct. Multidiscipl. Optim.
,
62
(
5
), pp.
2749
2763
.
30.
Liang
,
J.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
Nonlinear Topology Optimization of Parallel-Grasping Microgripper
,”
Precis. Eng.
,
60
, pp.
152
159
.
31.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2018
, “
Design of Buckling-Induced Mechanical Metamaterials for Energy Absorption Using Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1395
1410
.
32.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
33.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
34.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
.
35.
Huang
,
X.
, and
Xie
,
Y. M.
,
2009
, “
Bi-Directional Evolutionary Topology Optimization of Continuum Structures With One or Multiple Materials
,”
Comput. Mech.
,
43
(
3
), pp.
393
401
.
36.
Huang
,
X.
, and
Xie
,
Y.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
37.
Luo
,
Y.
,
Wang
,
M. Y.
, and
Kang
,
Z.
,
2015
, “
Topology Optimization of Geometrically Nonlinear Structures Based on an Additive Hyperelasticity Technique
,”
Comput. Methods Appl. Mech. Eng.
,
286
, pp.
422
441
.
38.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
.
39.
Wang
,
F.
,
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
On Projection Methods, Convergence and Robust Formulations in Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
43
(
6
), pp.
767
784
.
40.
Zhang
,
Z.
,
Zhao
,
Y.
,
Du
,
B.
,
Chen
,
X.
, and
Yao
,
W.
,
2020
, “
Topology Optimization of Hyperelastic Structures Using a Modified Evolutionary Topology Optimization Method
,”
Struct. Multidiscipl. Optim.
,
62
(
6
), pp.
3071
3088
.
41.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
A 213-Line Topology Optimization Code for Geometrically Nonlinear Structures
,”
Struct. Multidiscipl. Optim.
,
59
(
5
), pp.
1863
1879
.
42.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
43.
Chen
,
Q.
,
Zhang
,
X.
,
Zhang
,
H.
,
Zhu
,
B.
, and
Chen
,
B.
,
2019
, “
Topology Optimization of Bistable Mechanisms With Maximized Differences Between Switching Forces in Forward and Backward Direction
,”
Mech. Mach. Theory
,
139
, pp.
131
143
.
44.
Liu
,
C.-H.
,
Hsu
,
M.-C.
,
Chen
,
T.-L.
, and
Chen
,
Y.
,
2020
, “
Optimal Design of a Compliant Constant-force Mechanism to Deliver a Nearly Constant Output Force Over a Range of Input Displacements
,”
Soft Robot.
,
7
(
6
), pp.
758
769
.
You do not currently have access to this content.