Abstract

This paper presents on the edge obstacle surmounting method for QuadRunner, a hybrid quadruped robot, to overcome obstacles using hybrid locomotion where both legged and wheel configurations are utilized. When obstacle heights exceed the workspace of its leg, QuadRunner becomes quasi-statically mismatched, meaning the robot’s kinematic constraints are not satisfied, and it fails to achieve the climbing task quasi-statically. By incorporating its body as contact support, the center of gravity (COG) of QuadRunner can be successfully shifted on top of the obstacle to perform surmounting task. The unique design of the QuadRunner leg allows it to behave as a four-bar or slider-crank mechanism depending on the leg’s configuration. Here, we detail the sub-state strategy for its surmount task, where QuadRunner goes through the sub-states {L}EAN, {H}OOK, {F}OUR-BAR, {S}LIDE, {G}ET-UP to climb obstacles. In addition, limitations of the operation are analyzed and the requirements for climbing are identified. With our proposed method, QuadRunner can surmount obstacles of heights between 10 cm and 22 cm (higher than its kinematic max height of 16 cm) within 25 s. Lastly, a reliability test shows that the robot can climb the obstacle with a 70% success rate.

References

1.
Ghost Robotics
,
2016
, https://www.ghostrobotics.io/, Accessed February 8, 2022.
2.
Johnson
,
A. M.
, and
Koditschek
,
D. E.
,
2013
, “
Toward a Vocabulary of Legged Leaping
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
2568
2575
.
3.
Nguyen
,
Q.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
, and
Kim
,
S.
,
2019
, “
Optimized Jumping on the Mit Cheetah 3 Robot
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
7448
7454
.
4.
Sundram
,
J.
,
Nguyen
,
D. V.
,
Soh
,
G. S.
,
Bouffanais
,
R.
, and
Wood
,
K.
,
2018
, “
Development of a Miniature Robot for Multi-Robot Occupancy Grid Mapping
,”
2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Singapore
,
July 18–20
, IEEE, pp.
414
419
.
5.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2002
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
.
6.
Sun
,
T.
,
Xiang
,
X.
,
Su
,
W.
,
Wu
,
H.
, and
Song
,
Y.
,
2017
, “
A Transformable Wheel-Legged Mobile Robot: Design, Analysis and Experiment
,”
Rob. Auton. Syst.
,
98
(
1
), pp.
30
41
.
7.
Chou
,
J.-J.
, and
Yang
,
L.-S.
,
2013
, “
Innovative Design of a Claw-Wheel Transformable Robot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
1337
1342
.
8.
She
,
Y.
,
Hurd
,
C. J.
, and
Su
,
H.-J.
,
2015
, “
A Transformable Wheel Robot With a Passive Leg
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, IEEE, pp.
4165
4170
.
9.
Endo
,
G.
, and
Hirose
,
S.
,
2000
, “
Study on Roller-Walker (Multi-mode Steering Control and Self-Contained Locomotion)
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, Vol. 3, pp.
2808
2814
.
10.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated Leg–Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
(
1
), pp.
222
234
.
11.
Krovi
,
V. N.
, and
Kumar
,
V. R.
,
1999
, “
Modeling and Control of a Hybrid Locomotion System
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
448
455
.
12.
Bai
,
L.
,
Guan
,
J.
,
Chen
,
X.
,
Hou
,
J.
, and
Duan
,
W.
,
2018
, “
An Optional Passive/Active Transformable Wheel-Legged Mobility Concept for Search and Rescue Robots
,”
Rob. Auton. Syst.
,
107
(
1
), pp.
145
155
.
13.
Zhang
,
S.
,
Yao
,
J.-t.
,
Wang
,
Y.-b.
,
Liu
,
Z.-s.
,
Xu
,
Y.-d.
, and
Zhao
,
Y.-s.
,
2021
, “
Design and Motion Analysis of Reconfigurable Wheel-Legged Mobile Robot
,”
Defence Technology
,
18
(
6
), pp.
1023
1040
.
14.
Zheng
,
C.
, and
Lee
,
K.
,
2019
, “
Wheeler: Wheel-Leg Reconfigurable Mechanism With Passive Gears for Mobile Robot Applications
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
9292
9298
.
15.
Kim
,
Y.-S.
,
Jung
,
G.-P.
,
Kim
,
H.
,
Cho
,
K.-J.
, and
Chu
,
C.-N.
,
2013
, “
Wheel Transformer: A Miniaturized Terrain Adaptive Robot With Passively Transformed Wheels
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
, IEEE, pp.
5625
5630
.
16.
Quinn
,
R. D.
,
Offi
,
J. T.
,
Kingsley
,
D. A.
, and
Ritzmann
,
R. E.
,
2002
, “
Improved Mobility Through Abstracted Biological Principles
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Sept. 30–Oct. 4
, Vol. 3, IEEE, pp.
2652
2657
.
17.
Boxerbaum
,
A. S.
,
Oro
,
J.
,
Peterson
,
G.
, and
Quinn
,
R. D.
,
2008
, “
The Latest Generation Whegs™ Robot Features a Passive-Compliant Body Joint
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, IEEE, pp.
1636
1641
.
18.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Horchler
,
A. D.
,
Southard
,
L.
,
Wile
,
G. D.
,
Quinn
,
R. D.
,
Gorb
,
S. N.
, and
Ritzmann
,
R. E.
,
2009
, “
Mini-Whegs™ Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms
,”
Int. J. Rob. Res.
,
28
(
2
), pp.
285
302
.
19.
Dharmawan
,
A. G.
,
Xavier
,
P.
,
Hariri
,
H. H.
,
Soh
,
G. S.
,
Baji
,
A.
,
Bouffanais
,
R.
,
Foong
,
S.
,
Low
,
H. Y.
, and
Wood
,
K. L.
,
2019
, “
Design, Modeling, and Experimentation of a Bio-Inspired Miniature Climbing Robot With Bilayer Dry Adhesives
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020902
.
20.
Ackerman
,
E.
,
2012
, “
Boston Dynamics Sand Flea Robot Demonstrates Astonishing Jumping Skills
,,” https://spectrum.ieee.org/boston-dynamics-sand-flea-demonstrates-astonishing-jumping-skills, Accessed February 8, 2022.
21.
Topping
,
T. T.
,
Kenneally
,
G.
, and
Koditschek
,
D. E.
,
2017
, “
Quasi-Static and Dynamic Mismatch for Door Opening and Stair Climbing With a Legged Robot
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, IEEE, pp.
1080
1087
.
22.
Kau
,
N.
,
Schultz
,
A.
,
Ferrante
,
N.
, and
Slade
,
P.
,
2019
, “
Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
6309
6315
.
23.
Blackman
,
D. J.
,
Nicholson
,
J. V.
,
Ordonez
,
C.
,
Miller
,
B. D.
, and
Clark
,
J. E.
,
2016
, “
Gait Development on Minitaur, a Direct Drive Quadrupedal Robot
,”
SPIE DEFENSE + SECURITY Proceedings, Volume: 9837
,
Baltimore, MD
,
Apr. 17–21
, SPIE, pp.
141
155
.
24.
Bosworth
,
W.
,
Kim
,
S.
, and
Hogan
,
N.
,
2015
, “
The Mit Super Mini Cheetah: A Small, Low-Cost Quadrupedal Robot for Dynamic Locomotion
,”
2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR)
,
West Lafayette, IN
,
Oct. 18–20
, IEEE, pp.
1
8
.
25.
Yeldan
,
A.
,
Arora
,
A.
, and
Soh
,
G. S.
,
2022
, “
Quadrunner: A Transformable Quasi-Wheel Quadruped
,”
2022 International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, IEEE, pp.
4694
4700
.
26.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
,
Vol. 11
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.