Abstract

This paper describes a sampling strategy for the dynamic window approach (DWA), a local path planner, for omni-directional robot motion planning. An efficient local planner allows the robot to quickly respond to dynamic obstacles and ensures that commanded velocities meet the dynamic constraints of the robot. While typical DWA implementations sample the velocity space evenly, we propose that targeted sampling (TS) will result in a more fine-grained search of the relevant velocity space, leading to better control and performance in space-constrained environments. Our TS-DWA strategy is informed by the global planned path, allowing us to sample more velocities in the general path direction. We employ a polar velocity generator to selectively sample velocities and couple angular velocity samples to the path curvature. A bias for angular velocity is added for robots with a preferred heading, such as robots with forward-mounted sensors, to quickly turn toward the desired direction for better sensing. The strategy is implemented as a robot operating system (ROS) navigation stack local_planner plugin and tested in simulation with Gazebo using an omni-directional robot platform. Experiments show that as the space around the simulated robot gets smaller, our proposed sampling strategy results in more successful navigation trials to the goal in space-constrained environments compared to other commonly used methods like DWA and timed-elastic-band, where planning fails or oscillates. TS-DWA was also deployed on the Vision60 quadrupedal robot to demonstrate navigation through narrow corridors in the real world.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fox
,
D.
,
Burgard
,
W.
, and
Thrun
,
S.
,
1997
, “
The Dynamic Window Approach to Collision Avoidance
,”
IEEE Rob. Autom. Mag.
,
4
(
1
), pp.
23
33
.
2.
Elfes
,
A.
,
1989
, “
Using Occupancy Grids for Mobile Robot Perception and Navigation
,”
Computer
,
22
(
6
), pp.
46
57
.
3.
Lu
,
D. V.
,
Hershberger
,
D.
, and
Smart
,
W. D.
,
2014
, “
Layered Costmaps for Context-Sensitive Navigation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
709
715
.
4.
Dobrevski
,
M.
, and
Skočaj
,
D.
,
2020
, “
Adaptive Dynamic Window Approach for Local Navigation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 25–29
, pp.
6930
6936
.
5.
Xiao
,
X.
,
Wang
,
Z.
,
Xu
,
Z.
,
Liu
,
B.
,
Warnell
,
G.
,
Dhamankar
,
G.
,
Nair
,
A.
, and
Stone
,
P.
,
2022
, “
APPL: Adaptive Planner Parameter Learning
,”
Rob. Auton. Syst.
,
154
, p.
104132
.
6.
Missura
,
M.
, and
Bennewitz
,
M.
,
2019
, “
Predictive Collision Avoidance for the Dynamic Window Approach
,”
IEEE International Conference on Robotics and Automation
,
Montreal, QC, Canada
,
May 20–24
, pp.
8620
8626
.
7.
Howard
,
T. M.
,
Green
,
C. J.
,
Kelly
,
A.
, and
Ferguson
,
D.
,
2008
, “
State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments
,”
J. Field Rob.
,
25
(
6–7
), pp.
325
345
.
8.
Quinlan
,
S.
, and
Khatib
,
O.
,
1993
, “
Elastic Bands: Connecting Path Planning and Control
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, Vol. 2, pp.
802
807
.
9.
Quinlan
,
S.
,
1995
, “Real-Time Modification of Collision-Free Paths,” PhD Thesis, Stanford, CA, UMI Order No. GAX95-16902.
10.
Rösmann
,
C.
,
Feiten
,
W.
,
Wösch
,
T.
,
Hoffmann
,
F.
, and
Bertram
,
T.
,
2013
, “
Efficient Trajectory Optimization Using a Sparse Model
,”
European Conference on Mobile Robots
,
Barcelona, Catalonia, Spain
,
Sept. 25–27
, pp.
138
143
.
11.
Borenstein
,
J.
, and
Koren
,
Y.
,
1989
, “
Real-Time Obstacle Avoidance for Fast Mobile Robots
,”
IEEE Trans. Syst. Man Cybernetics
,
19
(
5
), pp.
1179
1187
.
12.
Sarvesh
,
A.
,
Carroll
,
A.
, and
Gopalswamy
,
S.
,
2022
, “
Reshaping Local Path Planner
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
6534
6541
.
13.
Hoeller
,
D.
,
Wellhausen
,
L.
,
Farshidian
,
F.
, and
Hutter
,
M.
,
2021
, “
Learning a State Representation and Navigation in Cluttered and Dynamic Environments
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
5081
5088
.
14.
Xiao
,
X.
,
Liu
,
B.
,
Warnell
,
G.
, and
Stone
,
P.
,
2021
, “
Toward Agile Maneuvers in Highly Constrained Spaces: Learning From Hallucination
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1503
1510
.
15.
Xiao
,
X.
,
Liu
,
B.
,
Warnell
,
G.
, and
Stone
,
P.
,
2022
, “
Motion Planning and Control for Mobile Robot Navigation Using Machine Learning: A Survey
,”
Auton. Rob.
,
46
(
5
), pp.
569
597
.
16.
Brock
,
O.
, and
Khatib
,
O.
,
1999
, “
High-Speed Navigation Using the Global Dynamic Window Approach
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, Vol. 1, pp.
341
346
.
17.
Wen
,
J.
,
Zhang
,
X.
,
Bi
,
Q.
,
Pan
,
Z.
,
Feng
,
Y.
,
Yuan
,
J.
, and
Fang
,
Y.
,
2021
, “
Mrpb 1.0: A Unified Benchmark for the Evaluation of Mobile Robot Local Planning Approaches
,”
IEEE International Conference on Robotics and Automation
,
Xi'an, China
,
May 30–June 5
, pp.
8238
8244
.
18.
Baran
,
R.
,
2020
, “
Nexus 4wd Mecanum Simulator
,” https://github.com/RBinsonB/nexus_4wd_mecanum_simulator.
19.
Marder-Eppstein
,
E.
,
Berger
,
E.
,
Foote
,
T.
,
Gerkey
,
B.
, and
Konolige
,
K.
,
2010
, “
The Office Marathon: Robust Navigation in an Indoor Office Environment
,”
IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–8
, pp.
300
307
.
You do not currently have access to this content.