Abstract

Since previous studies of parallel mechanisms (PMs) have tended to favor symmetrical overall configuration to obtain relatively stable kinematic and dynamic performance and to satisfy isotropic requirements. The analysis of kinematic and dynamic performance of asymmetric mechanisms has been an issue of interest. In this paper, an asymmetric SCARA-type PM with four-degrees-of-freedom (DOF) is proposed. First, the orientation characteristic set is calculated to obtain the DOF of the PM. Then, the inverse kinematics and the velocity and acceleration of each branch chain of the mechanism are analyzed. The dynamic model of the mechanism is established according to the principle of virtual work. The workspace of the mechanism is drawn according to the constraints that have been given to the mechanism's kinematic pairs. The singularity, dexterity, motion/force transfer performance, and maximum acceleration performance of the mechanism are also analyzed. On this basis, the kinematic and dynamic performance evaluation indexes of the mechanism are studied. Finally, the workspace and acceleration performance of the mechanism are optimized based on the differential evolution (DE) algorithm to obtain the structural parameters when the mechanism achieves optimal performance. The asymmetric PM proposed in this paper, as well as the algorithm of performance index and optimization method used, can provide some reference value for configuration design and optimization analysis.

References

1.
Yang
,
X.
,
Zhao
,
Z.
,
Xiong
,
H.
,
Li
,
Q.
, and
Lou
,
Y.
,
2021
, “
Kinematic Analysis and Optimal Design of a Novel Schönflies-Motion Parallel Manipulator With Rotational Pitch Motion for Assembly Operations
,”
ASME J. Mech. Rob.
,
13
(
4
), pp.
20
1627
.
2.
Simas
,
H.
,
Di Gregorio
,
R.
, and
Simoni
,
R.
,
2022
, “
TetraFLEX: Design and Kinematic Analysis of a Novel Self-Aligning Family of 3T1R Parallel Manipulators
,”
J. Field Robot.
,
39
(
5
), pp.
617
630
.
3.
Gosselin
,
C.
,
Isaksson
,
M.
,
Marlow
,
K.
, and
Laliberté
,
T.
,
2016
, “
Workspace and Sensitivity Analysis of a Novel Nonredundant Parallel SCARA Robot Featuring Infinite Tool Rotation
,”
IEEE Robot. Automation Lett.
,
1
(
2
), pp.
776
783
.
4.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
DELTA: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
.
5.
Pierrot
,
F.
, and
Company
,
O.
,
1999
, “
H4: A New Family of 4-DOF Parallel Robots
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat No.99TH8399)
,
Atlanta, GA
, pp.
508
513
.
6.
Krut
,
S.
,
Benoit
,
M.
,
Ota
,
H.
, and
Pierrot
,
F.
,
2003
, “
I4: A New Parallel Mechanism for Scara Motions
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation (Cat No.03CH37422)
,
Taipei, Taiwan
, Vol.
2
, pp.
1875
1880
.
7.
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High-Speed Parallel Robot for Pick-and-Place
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
553
558
.
8.
Xie
,
F.
, and
Liu
,
X. J.
,
2016
, “
Analysis of the Kinematic Characteristics of a High-Speed Parallel Robot With Schönflies-Motion: Mobility, Kinematics, and Singularity
,”
Front. Mech. Eng.
,
11
(
2
), pp.
135
143
.
9.
Wu
,
G.
,
Lin
,
Z.
,
Zhao
,
W.
,
Zhang
,
S.
,
Shen
,
H.
, and
Caro
,
S.
,
2020
, “
A Four-Limb Parallel Schönflies-Motion Generator With Full-Circle End-Effector Rotation
,”
Mech. Mach. Theory
,
146
(
4
), p.
103711
.
10.
Pierrot
,
F.
,
Marquet
,
F.
,
Company
,
O.
, and
Gil
,
T.
,
2001
, “
H4 Parallel Robot: Modeling, Design and Preliminary Experiments
,”
Proceedings of the IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164)
,
Seoul, South Korea
,
May 21–26
, pp.
3256
3261
.
11.
Chen
,
J.
,
San
,
H.
,
Wu
,
X.
,
Chen
,
M.
, and
He
,
W.
,
2019
, “
Structural Design and Characteristic Analysis for A 4-Degree-of-Freedom Parallel Manipulator
,”
Adv. Mech. Eng.
,
11
(
5
), p.
1687814019850995
.
12.
Zhao
,
J.
,
Wu
,
C.
,
Yang
,
G.
,
Chen
,
C.-Y.
,
Chen
,
S.
,
Xiong
,
C.
, and
Zhang
,
C.
,
2022
, “
Kinematics Analysis and Workspace Optimization for A 4-DOF 3T1R Parallel Manipulator
,”
Mech. Mach. Theory
,
167
(
1
), p.
104484
.
13.
Kim
,
S. M.
,
Yi
,
B. J.
, and
Kim
,
W.
,
2013
, “
Forward Kinematic Singularity Avoiding Design of a Schönflies Motion Generator by Asymmetric Attachment of Subchains
,”
Int. J. Control, Automation, Syst.
,
11
(
1
), pp.
116
126
.
14.
Yi
,
B. J.
,
Kim
,
S. M.
,
Kwak
,
H. K.
, and
Kim
,
W.
,
2013
, “
Multi-Task Oriented Design of An Asymmetric 3T1R Type 4-DOF Parallel Mechanism
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
227
(
10
), pp.
2236
2255
.
15.
Liu
,
W.
, and
Liu H
,
W.
,
2022
, “
Synthesis of Asymmetric Parallel Mechanism With Multiple 3-DOF Motion Modes
,”
Adv. Mech. Eng.
,
14
, p.
2
.
16.
ZH Almeida
,
R.
, and
A Hess-Coelho
,
T.
,
2010
, “
Dynamic Model of a 3-dof Asymmetric Parallel Mechanism
,”
Open Mech. Eng. J.
,
4
(
1
), pp.
48
55
.
17.
Yang
,
T.
,
Liu
,
A.
,
Shen
,
H.
, and
Hang
,
L.
,
2016
, “
Topological Structure Synthesis of 3T1R Parallel Mechanism Based on POC Equations
,”
Proceedings of the International Conference on Intelligent Robotics and Applications
,
Springer, Cham
,
Aug. 3
, pp.
147
161
.
18.
Tian
,
C.
,
Fang
,
Y.
, and
Ge
,
Q. J.
,
2019
, “
Design and Analysis of a Partially Decoupled Generalized Parallel Mechanism for 3T1R Motion
,”
Mech. Mach. Theory
,
140
(
10
), pp.
211
232
.
19.
Gallardo-Alvarado
,
J.
,
Rodríguez-Castro
,
R.
, and
Delossantos-Lara
,
P. J.
,
2018
, “
Kinematics and Dynamics of A 4-PRUR Schönflies Parallel Manipulator by Means of Screw Theory and the Principle of Virtual Work
,”
Mech. Mach. Theory
,
122
(
4
), pp.
347
360
.
20.
Wu
,
G.
,
2014
, “
Kinematics and Dynamics of an Asymmetrical Parallel Robotic Wrist
,”
J. Robot.
,
2014
.
21.
Meng
,
Q.
,
Liu
,
X.-J.
, and
Xie
,
F.
,
2022
, “
Design and Development of a Schönflies-Motion Parallel Robot With Articulated Platforms and Closed-Loop Passive Limbs
,”
Robot. Comput.-Integr. Manuf.
,
77
(
10
), p.
102352
.
22.
Liu
,
S.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Wang
,
P.
, and
Chetwynd
,
D. G.
,
2012
, “
Optimal Design of a 4-DOF SCARA Type Parallel Robot Using Dynamic Performance Indices and Angular Constraints
,”
ASME J. Mech. Rob.
4
(
3
), p.
031005
.
23.
Choi
,
H. B.
,
Konno
,
A.
, and
Uchiyama
,
M.
,
2010
, “
Design, Implementation, and Performance Evaluation of a 4-DOF Parallel Robot
,”
Robotica
,
28
(
1
), pp.
107
118
.
24.
Huang
,
T.
,
Li
,
Z.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
,
C. M.
,
2004
, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations
,”
J. Mech. Des.
,
126
(
3
), pp.
449
455
.
25.
Corbel
,
D.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2010
, “
Actuation Redundancy as a Way to Improve the Acceleration Capabilities of 3T and 3T1R Pick-and-Place Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041002
.
26.
Tian
,
C.
, and
Zhang
,
D.
,
2021
, “
Design and Analysis of Novel Kinematically Redundant Reconfigurable Generalized Parallel Manipulators
,”
Mech. Mach. Theory
,
166
(
9
), p.
104481
.
27.
Chen
,
M.
,
Zhang
,
Q.
,
Ge
,
Y.
,
Qin
,
X.
, and
Sun
,
Y.
,
2021
, “
Dynamic Analysis of An Over-Constrained Parallel Mechanism With the Principle of Virtual Work
,”
Math. Comput. Model. Dyn. Syst.
,
27
(
1
), pp.
347
372
.
28.
Yang
,
T. L.
,
Liu
,
A. X.
,
Jin
,
Q.
,
Luo
,
Y. F.
,
Shen
,
H. P.
, and
Hang
,
L. B.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
.
29.
Shen
,
H.
,
Zhao
,
Y.
,
Li
,
J.
,
Wu
,
G.
, and
Chablat
,
D.
,
2021
, “
A Novel Partially-Decoupled Translational Parallel Manipulator With Symbolic Kinematics, Singularity Identification and Workspace Determination
,”
Mech. Mach. Theory
,
164
(
10
), p.
104388
.
30.
Tu
,
Y.
,
Chen
,
Q.
,
Ye
,
W.
, and
Li
,
Q.
,
2018
, “
Kinematics, Singularity, and Optimal Design of a Novel 3T1R Parallel Manipulator With Full Rotational Capability
,”
J. Mech. Sci. Technol.
,
32
(
6
), pp.
2877
2887
.
You do not currently have access to this content.