Abstract

Soft grippers show adaptability and flexibility in grasping irregularly shaped and fragile objects. However, the low loading capacity and less deformation limit the soft gripper for developing large-scale applications. To overcome these limitations, we propose a new concept of a soft actuator with engineered smart particles. The proposed soft actuator is a dual-chamber programmable structure made from an elastic membrane filled with different particles, which can be driven by expanding particle volume or flexible membrane shrinking. Compared to traditional pneumatic or particle-jamming actuators, we use a combination of granular materials and smart materials, which delivers better active performances of large-scale deformation and variable stiffness. The coupled numerical model of the discrete element method and the finite element method is used to demonstrate the concept. The results indicated that the proposed soft gripper achieves the functionality of large deformation by a shrinking membrane or expanding particles. By controlling different design parameters, the actuator bends up to 138 deg, and the stiffness is up to a maximum of nine times of the pneumatic actuator. Additionally, the bending angle and deflections of the gripper actuator first increase and then drop down with increasing particle diameter ratio, actuator length, and elastic modulus of membrane material. Hence, the choice of different parameters must be in a specific range to achieve the required deformation. In conclusion, the soft-grasping gripper actuator can realize large bending deformation and shows potential for developing soft grippers in multi-scale physical scenarios.

References

1.
Krüger
,
J.
,
Lien
,
T. K.
, and
Verl
,
A.
,
2009
, “
Cooperation of Human and Machines in Assembly Lines
,”
CIRP Ann.
,
58
(
2
), pp.
628
646
.
2.
Bertelsen
,
A.
,
Melo
,
J.
,
Sánchez
,
E.
, and
Borro
,
D.
,
2013
, “
A Review of Surgical Robots for Spinal Interventions
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
9
(
4
), pp.
407
422
.
3.
Hirzinger
,
G.
,
Brunner
,
B.
,
Landzettel
,
K.
, and
Schott
,
J.
,
1998
, “
Preparing a New Generation of Space Robots—A Survey of Research at DLR
,”
Rob. Auton. Syst.
,
23
(
1–2
), pp.
99
106
.
4.
Okamura
,
A. M.
,
Smaby
,
N.
, and
Cutkosky
,
M. R.
,
2000
, “
An Overview of Dexterous Manipulation
,”
IEEE International Conference on Robotics and Automation, Symposia Proceedings
,
San Francisco, CA
,
Apr. 24–28
, pp.
255
262
.
5.
Xydas
,
N.
,
Bhagavat
,
M.
, and
Kao
,
I.
,
2000
, “
Study of Soft-Finger Contact Mechanics Using Finite Elements Analysis and Experiments
,”
Proceedings 2000 ICRA. Millennium Conference, IEEE International Conference on Robotics and Automation, Symposia Proceedings
,
San Francisco, CA
,
Apr. 24–28
, pp.
2179
2184
.
6.
Walker
,
J.
,
Zidek
,
T.
,
Harbel
,
C.
,
Yoon
,
S.
,
Strickland
,
F. S.
,
Kumar
,
S.
, and
Shin
,
M.
,
2020
, “
Soft Robotics: A Review of Recent Developments of Pneumatic Soft Actuators
,”
Actuators
,
9
(
1
), p.
3
.
7.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
8.
Cho
,
K.-J.
,
Koh
,
J.-S.
,
Kim
,
S.
,
Chu
,
W.-S.
,
Hong
,
Y.
, and
Ahn
,
S.-H.
,
2009
, “
Review of Manufacturing Processes for Soft Biomimetic Robots
,”
Int. J. Precis. Eng. Manuf.
,
10
(
3
), pp.
171
181
.
9.
Coevoet
,
E.
,
Morales-Bieze
,
T.
,
Largilliere
,
F.
,
Zhang
,
Z.
,
Thieffry
,
M.
,
Sanz-Lopez
,
M.
,
Carrez
,
B.
,
Marchal
,
D.
,
Goury
,
O.
, and
Dequidt
,
J.
,
2017
, “
Software Toolkit for Modeling, Simulation, and Control of Soft Robots
,”
Adv. Rob.
,
31
(
22
), pp.
1208
1224
.
10.
Gupta
,
U.
,
Qin
,
L.
,
Wang
,
Y.
,
Godaba
,
H.
, and
Zhu
,
J.
,
2019
, “
Soft Robots Based on Dielectric Elastomer Actuators: A Review
,”
Smart Mater. Struct.
,
28
(
10
), p.
103002
.
11.
Li
,
X.
,
Zhang
,
Z.
,
Sun
,
M.
,
Wu
,
H.
,
Zhou
,
Y.
,
Wu
,
H.
, and
Jiang
,
S.
,
2020
, “
A Magneto-Active Soft Gripper With Adaptive and Controllable Motion
,”
Smart Mater. Struct.
,
30
(
1
), p.
015024
.
12.
Hamburg
,
E.
,
Vunder
,
V.
,
Johanson
,
U.
,
Kaasik
,
F.
, and
Aabloo
,
A.
,
2016
, “
Soft Shape-Adaptive Gripping Device Made From Artificial Muscle
,”
Smart Materials and Nondestructive Evaluation for Energy Systems
,
Las Vegas, NV
,
Mar. 20–24
, pp.
296
302
.
13.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
14.
Mosadegh
,
B.
,
Polygerinos
,
P.
,
Keplinger
,
C.
,
Wennstedt
,
S.
,
Shepherd
,
R. F.
,
Gupta
,
U.
,
Shim
,
J.
,
Bertoldi
,
K.
,
Walsh
,
C. J.
, and
Whitesides
,
G. M.
,
2014
, “
Pneumatic Networks for Soft Robotics That Actuate Rapidly
,”
Adv. Funct. Mater.
,
24
(
15
), pp.
2163
2170
.
15.
Han
,
D.
,
Farino
,
C.
,
Yang
,
C.
,
Scott
,
T.
,
Browe
,
D.
,
Choi
,
W.
,
Freeman
,
J. W.
, and
Lee
,
H.
,
2018
, “
Soft Robotic Manipulation and Locomotion With a 3D Printed Electroactive Hydrogel
,”
ACS Appl. Mater. Interfaces
,
10
(
21
), pp.
17512
17518
.
16.
Pourazadi
,
S.
,
Bui
,
H.
, and
Menon
,
C.
,
2019
, “
Investigation on a Soft Grasping Gripper Based on Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
28
(
3
), p.
035009
.
17.
Zhang
,
Z.
,
Li
,
X.
,
Yu
,
X.
,
Chai
,
H.
,
Li
,
Y.
,
Wu
,
H.
, and
Jiang
,
S.
,
2019
, “
Magnetic Actuation Bionic Robotic Gripper With Bistable Morphing Structure
,”
Compos. Struct.
,
229
, p.
111422
.
18.
Hager
,
M. D.
,
Bode
,
S.
,
Weber
,
C.
, and
Schubert
,
U. S.
,
2015
, “
Shape Memory Polymers: Past, Present and Future Developments
,”
Prog. Polym. Sci.
,
49
, pp.
3
33
.
19.
Sun
,
L.
,
Huang
,
W. M.
,
Ding
,
Z.
,
Zhao
,
Y.
,
Wang
,
C. C.
,
Purnawali
,
H.
, and
Tang
,
C.
,
2012
, “
Stimulus-Responsive Shape Memory Materials: A Review
,”
Mater. Des.
,
33
, pp.
577
640
.
20.
Cianchetti
,
M.
,
Licofonte
,
A.
,
Follador
,
M.
,
Rogai
,
F.
, and
Laschi
,
C.
,
2014
, “
Bioinspired Soft Actuation System Using Shape Memory Alloys
,”
Actuators
, 3(
3
), pp.
226
244
.
21.
Lendlein
,
A.
, and
Gould
,
O. E.
,
2019
, “
Reprogrammable Recovery and Actuation Behaviour of Shape-Memory Polymers
,”
Nat. Rev. Mater.
,
4
(
2
), pp.
116
133
.
22.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
23.
Shepherd
,
R. F.
,
Ilievski
,
F.
,
Choi
,
W.
,
Morin
,
S. A.
,
Stokes
,
A. A.
,
Mazzeo
,
A. D.
,
Chen
,
X.
,
Wang
,
M.
, and
Whitesides
,
G. M.
,
2011
, “
Multi-gait Soft Robot
,”
Proc. Natl. Acad. Sci. U. S. A.
,
108
(
51
), pp.
20400
20403
.
24.
Hao
,
Y.
,
Gong
,
Z.
,
Xie
,
Z.
,
Guan
,
S.
,
Yang
,
X.
,
Ren
,
Z.
,
Wang
,
T.
, and
Wen
,
L.
,
2016
, “
Universal Soft Pneumatic Robotic Gripper With Variable Effective Length
,”
2016 35th Chinese Control Conference (CCC)
,
Chengdu, China
,
July 27–29
, pp.
6109
6114
.
25.
Bishop-Moser
,
J.
,
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2012
, “
Design of Soft Robotic Actuators Using Fluid-Filled Fiber-Reinforced Elastomeric Enclosures in Parallel Combinations
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
4264
4269
.
26.
Li
,
Y.
,
Chen
,
Y.
,
Yang
,
Y.
, and
Li
,
Y.
,
2019
, “
Soft Robotic Grippers Based on Particle Transmission
,”
IEEE/ASME Trans. Mech.
,
24
(
3
), pp.
969
978
.
27.
Udupa
,
G.
,
Sreedharan
,
P.
, and
Aditya
,
K.
,
2010
, “
Robotic Gripper Driven by Flexible Microactuator Based on an Innovative Technique
,”
2010 IEEE Workshop on Advanced Robotics and Its Social Impacts
,
Seoul, South Korea
,
Oct. 26–28
, pp.
111
116
.
28.
Walker
,
I. D.
,
Dawson
,
D. M.
,
Flash
,
T.
,
Grasso
,
F. W.
,
Hanlon
,
R. T.
,
Hochner
,
B.
,
Kier
,
W. M.
,
Pagano
,
C. C.
,
Rahn
,
C. D.
, and
Zhang
,
Q. M.
,
2005
, “
Continuum Robot Arms Inspired by Cephalopods
,” Unmanned Ground Vehicle Technology VII (Vol. 5804, pp.
303
314
), SPIE.
29.
Fitzgerald
,
S. G.
,
Delaney
,
G. W.
, and
Howard
,
D.
,
2020
, “
A Review of Jamming Actuation in Soft Robotics
,”
Actuators
,
9
(
4
), p.
104
.
30.
Jiang
,
A.
,
Ranzani
,
T.
,
Gerboni
,
G.
,
Lekstutyte
,
L.
,
Althoefer
,
K.
,
Dasgupta
,
P.
, and
Nanayakkara
,
T.
,
2014
, “
Robotic Granular Jamming: Does the Membrane Matter?
,”
Soft Rob.
,
1
(
3
), pp.
192
201
.
31.
Li
,
Y.
,
Chen
,
Y.
, and
Li
,
Y.
,
2018
, “
Distributed Design of Passive Particle Jamming Based Soft Grippers
,”
2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, pp.
547
552
.
32.
Amend
,
J. R.
,
Brown
,
E.
,
Rodenberg
,
N.
,
Jaeger
,
H. M.
, and
Lipson
,
H.
,
2012
, “
A Positive Pressure Universal Gripper Based on the Jamming of Granular Material
,”
IEEE Trans. Rob.
,
28
(
2
), pp.
341
350
.
33.
Jiang
,
A.
,
Xynogalas
,
G.
,
Dasgupta
,
P.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2012
, “
Design of a Variable Stiffness Flexible Manipulator With Composite Granular Jamming and Membrane Coupling
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
2922
2927
.
34.
Amend
,
J.
,
Cheng
,
N.
,
Fakhouri
,
S.
, and
Culley
,
B.
,
2016
, “
Soft Robotics Commercialization: Jamming Grippers From Research to Product
,”
Soft Rob.
,
3
(
4
), pp.
213
222
.
35.
Jiang
,
P.
,
Yang
,
Y.
,
Chen
,
M. Z.
, and
Chen
,
Y.
,
2019
, “
A Variable Stiffness Gripper Based on Differential Drive Particle Jamming
,”
Bioinsp. Biomim.
,
14
(
3
), p.
036009
.
36.
Wang
,
G.
,
Li
,
M.
, and
Zhou
,
J.
,
2019
, “
Modeling Soft Machines Driven by Buckling Actuators
,”
Int. J. Mech. Sci.
,
157
, pp.
662
667
.
37.
Coevoet
,
E.
,
Escande
,
A.
, and
Duriez
,
C.
,
2019
, “
Soft Robots Locomotion and Manipulation Control Using FEM Simulation and Quadratic Programming
,”
2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, pp.
739
745
.
38.
Dilibal
,
S.
,
Sahin
,
H.
,
Danquah
,
J. O.
,
Emon
,
M. O. F.
, and
Choi
,
J.-W.
,
2021
, “
Additively Manufactured Custom Soft Gripper With Embedded Soft Force Sensors for an Industrial Robot
,”
Int. J. Precis. Eng. Manuf.
,
22
(
4
), pp.
709
718
.
39.
Beléndez
,
T.
,
Neipp
,
C.
, and
Beléndez
,
A.
,
2002
, “
Large and Small Deflections of a Cantilever Beam
,”
Eur. J. Phys.
,
23
(
3
), pp.
371
379
.
40.
Chen
,
L.
,
2010
, “
An Integral Approach for Large Deflection Cantilever Beams
,”
Int. J. Non-Linear Mech.
,
45
(
3
), pp.
301
305
.
41.
Khandan
,
R.
,
Noroozi
,
S.
,
Sewell
,
P.
, and
Vinney
,
J.
,
2012
, “
The Development of Laminated Composite Plate Theories: A Review
,”
J. Mater. Sci.
,
47
(
16
), pp.
5901
5910
.
42.
White
,
P.
,
Latscha
,
S.
, and
Yim
,
M.
,
2010
, “
Modeling of a Dielectric Elastomer Bender Actuator
,”
Actuators
,
3
(
3
), pp.
245
269
.
43.
Dratt
,
M.
, and
Katterfeld
,
A.
,
2017
, “
Coupling of FEM and DEM Simulations to Consider Dynamic Deformations Under Particle Load
,”
Gran. Matter
,
19
(
3
), pp.
1
15
.
44.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.
45.
Williams
,
J. R.
,
Perkins
,
E.
, and
Cook
,
B.
,
2004
, “
A Contact Algorithm for Partitioning N Arbitrary Sized Objects
,”
Eng. Comput.
,
21
(
2/3/4
), pp.
235
248
.
46.
Zang
,
M.
,
Gao
,
W.
, and
Lei
,
Z.
,
2011
, “
A Contact Algorithm for 3D Discrete and Finite Element Contact Problems Based on Penalty Function Method
,”
Comput. Mech.
,
48
(
5
), pp.
541
550
.
47.
Navarro
,
H. A.
, and
de Souza Braun
,
M. P.
,
2013
, “
Determination of the Normal Spring Stiffness Coefficient in the Linear Spring–Dashpot Contact Model of Discrete Element Method
,”
Powder Technol.
,
246
, pp.
707
722
.
48.
Han
,
K.
,
Peric
,
D.
,
Owen
,
D.
, and
Yu
,
J.
,
2000
, “
A Combined Finite/Discrete Element Simulation of Shot Peening Processes–Part II: 3D Interaction Laws
,”
Eng. Comput.
,
17
(
6
), pp.
680
702
.
49.
Marechal
,
L.
,
Balland
,
P.
,
Lindenroth
,
L.
,
Petrou
,
F.
,
Kontovounisios
,
C.
, and
Bello
,
F.
,
2021
, “
Toward a Common Framework and Database of Materials for Soft Robotics
,”
Soft Rob.
,
8
(
3
), pp.
284
297
.
You do not currently have access to this content.