Abstract

Locusts keep their bodies moving in a straight line during the takeoff and maintain the body stable during the whole jumping with small pitching motions, ensuring both kinematic and dynamic stability to reach their intended destinations. Inspired by locusts’ jumping performance, the Stephenson II six-bar jumping mechanism is adopted to mimic the kinematic stability of locusts’ takeoff and a dynamic model is developed to analyze the impacts of the torsional spring location, the spring stiffness, and the location of the equivalent body bar centroid on the jumping performance. Furthermore, a revised eight-bar jumping mechanism is proposed to solve the difficulty in realizing dynamic stability using the six-bar mechanism, as the moments of momentum of each component around the overall centroid are positive and contribute together to the counterclockwise rotation of the jumping. The dynamic modeling shows that the mass of the equivalent tarsus bar plays an important role in realizing the dynamic stability for the eight-bar jumping mechanism. Finally, two kinds of jumping robots are designed, fabricated and tested with jumping performance recorded by high-speed cameras, which validates the impacts of the mass of the equivalent tarsus bar on the jumping stability in the eight-bar jumping mechanism.

References

1.
Burdick
,
J.
, and
Fiorini
,
P.
,
2003
, “
Minimalist Jumping Robots for Celestial Exploration
,”
Int. J. Rob. Res.
,
22
(
7–8
), pp.
653
674
.
2.
Alexander
,
R. M. N.
, and
Vernon
,
A.
,
1975
, “
The Mechanics of Hopping by Kangaroos (Macropodidae)
,”
J. Zool.
,
177
(
2
), pp.
265
303
.
3.
Aerts
,
P.
,
1998
, “
Vertical Jumping in Galago senegalensis: The Quest for an Obligate Mechanical Power Amplifier
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
,
353
(
1375
), pp.
1607
1620
.
4.
Wang
,
M.
,
Zang
,
X. Z.
,
Fan
,
J. Z.
, and
Zhao
,
J.
,
2008
, “
Biological Jumping Mechanism Analysis and Modeling for Frog Robot
,”
J. Bionic. Eng.
,
5
(
3
), pp.
181
188
.
5.
Gabriel
,
J. M.
,
1985
, “
The Development of the Locust Jumping Mechanism: II. Energy Storage and Muscle Mechanics
,”
J. Exp. Biol.
,
118
(
1
), pp.
327
340
.
6.
Mo
,
X.
,
Ge
,
W.
,
Miraglia
,
M.
,
Inglese
,
F.
,
Zhao
,
D.
,
Stefanini
,
C.
, and
Romano
,
D.
,
2020
, “
Jumping Locomotion Strategies: From Animals to Bioinspired Robots
,”
Appl. Sci. (Basel)
,
10
(
23
), p.
8607
.
7.
Noh
,
M.
,
Kim
,
S. W.
,
An
,
S.
,
Koh
,
J. S.
, and
Cho
,
K. J.
,
2012
, “
Flea-Inspired Catapult Mechanism for Miniature Jumping Robots
,”
IEEE Trans. Robot.
,
28
(
5
), pp.
1007
1018
.
8.
Koh
,
J. S.
,
Jung
,
S. P.
,
Wood
,
R. J.
, and
Cho
,
K. J.
,
2013
, “
A Jumping Robotic Insect Based on a Torque Reversal Catapult Mechanism
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
3796
3801
.
9.
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2006
, “
A Bioinspired Concept for High Efficiency Locomotion in Micro Robots: The Jumping Robot Grillo
,”
2006 IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
4037
4042
.
10.
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2007
, “
Design and Development of the Long-Jumping ‘Grillo’ Mini Robot
,”
2007 IEEE International Conference on Robotics and Automation (ICRA)
,
Rome, Italy
,
Apr. 10–14
, pp.
467
472
.
11.
Scarfogliero
,
U.
,
Stefanini
,
C.
, and
Dario
,
P.
,
2009
, “
The Use of Compliant Joints and Elastic Energy Storage in Bio-Inspired Legged Robots
,”
Mech. Mach. Theory
,
44
(
3
), pp.
580
590
.
12.
Scarfogliero
,
U.
,
Li
,
F.
,
Chen
,
D.
,
Stefanini
,
C.
,
Liu
,
W.
, and
Dario
,
P.
,
2007
, “
Jumping Mini-Robot as a Model of Scale Effects on Legged Locomotion
,”
2007 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Sanya, China
,
Dec. 15-18
,
pp. 853-858
.
13.
Bonsignori
,
G.
,
Stefanini
,
C.
,
Scarfogliero
,
U.
,
Mintchev
,
S.
,
Benelli
,
G.
, and
Dario
,
P.
,
2013
, “
The Green Leafhopper, Cicadella viridis (Hemiptera, Auchenorrhyncha, Cicadellidae), Jumps With Near-Constant Acceleration
,”
J. Exp. Biol.
,
216
(
7
), pp.
1270
1279
.
14.
Kovac
,
M.
,
Fuchs
,
M.
,
Guignard
,
A.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2008
, “
A Miniature 7 g Jumping Robot
,”
2008 IEEE International Conference on Robotics and Automation (ICRA)
,
Pasadena, CA
,
May 19–23
, pp.
373
378
.
15.
Kovac
,
M.
,
Schlegel
,
M.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2009
, “
A Miniature Jumping Robot With Self-Recovery Capabilities
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
St. Louis, MO
,
Oct. 10–15
, pp.
583
588
.
16.
Kovac
,
M.
,
Schlegel
,
M.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2010
, “
Steerable Miniature Jumping Robot
,”
Auton. Robots
,
28
(
3
), pp.
295
306
.
17.
Kovac
,
M.
,
Fauria
,
O.
,
Zufferey
,
J. C.
, and
Floreano
,
D.
,
2011
, “
The EPFL Jumpglider: A Hybrid Jumping and Gliding Robot With Rigid or Folding Wings
,”
2011 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Karon Beach, Thailand
,
Dec. 7–11
, pp.
1503
1508
.
18.
Zaitsev
,
V.
,
Gvirsman
,
O.
,
Hanan
,
U. B.
,
Weiss
,
A.
,
Ayali
,
A.
, and
Kosa
,
G.
,
2015
, “
A Locust-Inspired Miniature Jumping Robot
,”
Bioinspir. Biomim.
,
10
(
6
), p.
066012
.
19.
Zaitsev
,
V.
,
Gvirsman
,
O.
,
Hanan
,
U. B.
,
Weiss
,
A.
,
Ayali
,
A.
, and
Kosa
,
G.
,
2015
, “
Locust-Inspired Miniature Jumping Robot
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
553
558
.
20.
Cofer
,
D. W.
,
Reid
,
J.
,
Zhu
,
Y.
,
Cymbalyuk
,
G.
,
Heitler
,
W. J.
, and
Edwards
,
D. H.
,
2007
, “
Role of the Semi-Lunar Process in Locust Jumping
,”
BMC Neurosci.
,
8
(
2
), pp.
1
2
.
21.
Beck
,
A.
,
Zaitsev
,
V.
,
Hanan
,
U. B.
,
Kosa
,
G.
,
Ayali
,
A.
, and
Weiss
,
A.
,
2017
, “
Jump Stabilization and Landing Control by Wing-Spreading of a Locust-Inspired Jumper
,”
Bioinspir. Biomim.
,
12
(
6
), p.
066006
.
22.
Nguyen
,
Q. V.
, and
Park
,
H. C.
,
2012
, “
Design and Demonstration of a Locust-Like Jumping Mechanism for Small-Scale Robots
,”
J. Bionic. Eng.
,
9
(
3
), pp.
271
281
.
23.
Chen
,
D.
,
Yin
,
J.
,
Zhao
,
K.
,
Zheng
,
W.
, and
Wang
,
T.
,
2011
, “
Bionic Mechanism and Kinematics Analysis of Hopping Robot Inspired by Locust Jumping
,”
J. Bionic. Eng.
,
8
(
4
), pp.
429
439
.
24.
Chen
,
D.
,
Chen
,
K.
,
Zhang
,
Z.
, and
Zhang
,
B.
,
2015
, “
Mechanism of Locust Air Posture Adjustment
,”
J. Bionic. Eng.
,
12
(
3
), pp.
418
431
.
25.
Chen
,
D. S.
,
Yin
,
J. M.
,
Chen
,
K. W.
, and
Li
,
Z.
,
2014
, “
Biomechanical and Dynamic Mechanism of Locust Takeoff
,”
Acta Mech. Sin.
,
30
(
5
), pp.
762
774
.
26.
Chen
,
D.
,
Zhang
,
Z.
, and
Chen
,
K.
,
2016
, “
Legs Attitudes Determination for Bionic Locust Robot Based on Landing Buffering Performance
,”
Mech. Mach. Theory
,
99
, pp.
117
139
.
27.
Zhang
,
Z.
,
Yang
,
Q.
,
Gui
,
S.
,
Chang
,
B.
,
Zhao
,
J.
,
Yang
,
H.
, and
Chen
,
D.
,
2019
, “
Mechanism Design for Locust-Inspired Robot With One-DOF Leg Based on Jumping Stability
,”
Mech. Mach. Theory
,
133
, pp.
584
605
.
28.
Haldane
,
D. W.
,
Plecnik
,
M. M.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2016
, “
Robotic Vertical Jumping Agility Via Series-Elastic Power Modulation
,”
Sci. Robot
,
1
(
1
), p.
eaag2048
.
29.
Plecnik
,
M. M.
,
Haldane
,
D. W.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2017
, “
Design Exploration and Kinematic Tuning of a Power Modulating Jumping Monopod
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011009
.
30.
Zhang
,
Z.
,
Yang
,
Q.
,
Zhao
,
J.
,
Chang
,
B.
, and
Liu
,
X.
,
2020
, “
Kinematic Synthesis Method for the One-Degree-of-Freedom Jumping Leg Mechanism of a Locust-Inspired Robot
,”
Sci. China Technol. Sci.
,
63
(
3
), pp.
472
487
.
31.
Mo
,
X.
,
Ge
,
W.
,
Romano
,
D.
,
Donati
,
E.
,
Benelli
,
G.
,
Dario
,
P.
, and
Stefanini
,
C.
,
2019
, “
Modelling Jumping in Locusta migratoria and the Influence of Substrate Roughness
,”
Entomol. Gen.
,
38
(
4
), pp.
317
332
.
32.
Cofer
,
D.
,
Cymbalyuk
,
G.
,
Heitler
,
W. J.
, and
Edwards
,
D. H.
,
2010
, “
Control of Tumbling During the Locust Jump
,”
J. Exp. Biol.
,
213
(
19
), pp.
3378
3387
.
33.
Mo
,
X.
,
Ge
,
W.
,
Zhao
,
D.
, and
Shen
,
Y.
,
2020
, “
Path and Function Synthesis of Multi-Bar Mechanisms Using Beetle Antennae Search Algorithm
,”
Filomat
,
34
(
15
), pp.
5215
5233
.
You do not currently have access to this content.