Abstract

Climbing robots have gained significance in hazardous and steep terrains, yet adapting to complex environments remains a challenge. Inspired by nature's climbers, this paper introduces a climbing dynamics model that integrates foot-end contact forces, crucial for safe and efficient wall climbing. Drawing insights from animal locomotion and biomechanics, we present a comprehensive dynamic model for quadruped robots. Our model, built upon multibody dynamics and a dynamic contact model based on spiny claw mechanisms, accurately simulates robot forces and motion during climbing, even predicting failure scenarios. Experimental validation further establishes model accuracy. This study advances climbing robot research by addressing attachment interaction dynamics and provides valuable insights for optimizing robot structural design and gait strategies.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fang
,
G.
, and
Cheng
,
J.
,
2023
, “
Advances in Climbing Robots for Vertical Structures in the Past Decade: A Review
,”
Biomimetics
,
8
(
1
), p.
47
.
2.
Chu
,
B.
,
Jung
,
K.
,
Han
,
C.-S.
, and
Hong
,
D.
,
2010
, “
A Survey of Climbing Robots: Locomotion and Adhesion
,”
Int. J. Precis. Eng. Manuf.
,
11
(
4
), pp.
633
647
.
3.
Tao
,
B.
,
Gong
,
Z.
, and
Ding
,
H.
,
2023
, “
Climbing Robot for Manufacturing
,”
Natl. Sci. Rev.
,
10
(
5
), p.
nwad042
.
4.
Eich
,
M.
, and
Vögele
,
T.
,
2011
, “
Design and Control of a Lightweight Magnetic Climbing Robot for Vessel Inspection
,”
Proceedings of the Mediterranean Conference on Control and Automation, MED
,
Corfu, Greece
,
June 20–23
, pp.
1200
1205
.
5.
Nguyen
,
S. T.
, and
La
,
H. M.
,
2021
, “
A Climbing Robot for Steel Bridge Inspection
,”
J. Intell. Rob. Syst.
,
102
(
4
), pp.
1
21
.
6.
Ge
,
D.
,
Tang
,
Y.
,
Ma
,
S.
,
Matsuno
,
T.
, and
Ren
,
C.
,
2020
, “
A Pressing Attachment Approach for a Wall-Climbing Robot Utilizing Passive Suction Cups
,”
Robotics
,
9
(
2
), p.
26
.
7.
Lee
,
G.
,
Kim
,
H.
,
Seo
,
K.
,
Kim
,
J.
, and
Kim
,
H. S.
,
2015
, “
MultiTrack: A Multi-Linked Track Robot With Suction Adhesion for Climbing and Transition
,”
Rob. Auton. Syst.
,
72
, pp.
207
216
.
8.
Spenko
,
M. J.
,
Haynes
,
G. C.
,
Saunders
,
J. A.
,
Cutkosky
,
M. R.
,
Rizzi
,
A. A.
,
Full
,
R. J.
, and
Koditschek
,
D. E.
,
2008
, “
Biologically Inspired Climbing With a Hexapedal Robot
,”
J. Field Robot.
,
25
(
4–5
), pp.
223
242
.
9.
Blickhan
,
R.
, and
Full
,
R.
,
1993
, “
Similarity in Multilegged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol. A
,
173
, pp.
509
517
.
10.
Schmitt
,
J.
, and
Holmes
,
P.
,
2000
, “
Mechanical Models for Insect Locomotion: Dynamics and Stability in the Horizontal Plane I. Theory
,”
Biol. Cybern.
,
83
(
6
), pp.
501
515
.
11.
Autumn
,
K.
,
Hsieh
,
S. T.
,
Dudek
,
D. M.
,
Chen
,
J.
,
Chitaphan
,
C.
, and
Full
,
R. J.
,
2006
, “
Dynamics of Geckos Running Vertically
,”
J. Exp. Biol.
,
209
(
Pt 2
), pp.
260
272
.
12.
Goldman
,
D. I.
,
Chen
,
T. S.
,
Dudek
,
D. M.
, and
Full
,
R. J.
,
2006
, “
Dynamics of Rapid Vertical Climbing in Cockroaches Reveals a Template
,”
J. Exp. Biol.
,
209
(
Pt 15
), pp.
2990
3000
.
13.
Miller
,
B.
,
Ordonez
,
C.
, and
Clark
,
J. E.
,
2013
, “
Examining the Effect of Rear Leg Specialization on Dynamic Climbing With SCARAB: A Dynamic Quadrupedal Robot for Locomotion on Vertical and Horizontal Surfaces
,”
Experimental Robotics
,
Québec City, Canada
,
June 18–21
, Springer, pp.
113
126
.
14.
Ko
,
W.-H.
,
Chiang
,
W.-H.
,
Hsu
,
Y.-H.
,
Yu
,
M.-Y.
,
Lin
,
H.-S.
, and
Lin
,
P.-C.
,
2016
, “
A Model-Based Two-Arm Robot With Dynamic Vertical and Lateral Climbing Behaviors
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
044503
.
15.
Wang
,
W.
,
Li
,
X.
,
Wu
,
S.
,
Zhu
,
P.
, and
Zhao
,
F.
,
2017
, “
Effects of Pendular Waist on Gecko's Climbing: Dynamic Gait, Analytical Model and Bio-Inspired Robot
,”
J. Bionic. Eng.
,
14
(
2
), pp.
191
201
.
16.
Miller
,
B. D.
,
Rivera
,
P. R.
,
Dickson
,
J. D.
, and
Clark
,
J. E.
,
2015
, “
Running up a Wall: The Role and Challenges of Dynamic Climbing in Enhancing Multi-Modal Legged Systems
,”
Bioinspir. Biomim.
,
10
(
2
), p.
025005
.
17.
Hong
,
S.
,
Um
,
Y.
,
Park
,
J.
, and
Park
,
H. W.
,
2022
, “
Agile and Versatile Climbing on Ferromagnetic Surfaces With a Quadrupedal Robot
,”
Sci. Robot.
,
7
(
73
), p.
eadd1017
.
18.
Fan
,
J.
,
Xu
,
T.
,
Fang
,
Q.
,
Zhao
,
J.
, and
Zhu
,
Y.
,
2020
, “
A Novel Style Design of a Permanent-Magnetic Adsorption Mechanism for a Wall-Climbing Robot
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
035001
.
19.
Hernando
,
M.
,
Gambao
,
E.
,
Prados
,
C.
,
Brito
,
D.
, and
Brunete
,
A.
,
2022
, “
ROMERIN: A New Concept of a Modular Autonomous Climbing Robot
,”
Int. J. Adv. Rob. Syst.
,
19
(
5
), p.
17298806221123416
.
20.
Li
,
Z.
,
Li
,
Z.
,
Tam
,
L. M.
, and
Xu
,
Q.
,
2022
, “
Design and Development of a Versatile Quadruped Climbing Robot With Obstacle-Overcoming and Manipulation Capabilities
,”
IEEE-ASME T. Mech.
,
28
(
3
), pp.
1649
1661
.
21.
Unver
,
O.
,
Uneri
,
A.
,
Aydemir
,
A.
, and
Sitti
,
M.
,
2006
, “
Geckobot: A Gecko Inspired Climbing Robot Using Elastomer Adhesives
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
2329
2335
.
22.
Kim
,
S.
,
Spenko
,
M.
,
Trujillo
,
S.
,
Heyneman
,
B.
,
Mattoli
,
V.
, and
Cutkosky
,
M. R.
,
2007
, “
Whole Body Adhesion: Hierarchical, Directional and Distributed Control of Adhesive Forces for a Climbing Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Rome, Italy
,
Apr. 10–14
, pp.
1268
1273
.
23.
Wang
,
S.
,
Jiang
,
H.
,
Myung Huh
,
T.
,
Sun
,
D.
,
Ruotolo
,
W.
,
Miller
,
M.
,
Roderick
,
W. R.
,
Stuart
,
H. S.
, and
Cutkosky
,
M. R.
,
2019
, “
SpinyHand: Contact Load Sharing for a Human-Scale Climbing Robot
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031009
.
24.
Xie
,
C.
,
Wu
,
X.
, and
Wang
,
X.
,
2019
, “
A Three-Row Opposed Gripping Mechanism With Bioinspired Spiny Toes for Wall-Climbing Robots
,”
J. Bionic Eng.
,
16
, pp.
994
1006
.
25.
Fang
,
S.
,
Shi
,
S.
,
Wu
,
X.
, and
Wang
,
X.
,
2023
, “
A Walking and Climbing Quadruped Robot Capable of Ground-Wall Transition: Design, Mobility Analysis and Gait Planning
,”
Intell. Serv. Rob.
,
16
(
4
), pp.
431
451
.
26.
Han
,
L.
,
Wang
,
Z.
,
Ji
,
A.
, and
Dai
,
Z.
,
2011
, “
Grip and Detachment of Locusts on Inverted Sandpaper Substrates
,”
Bioinspir. Biomim.
,
6
(
4
), p.
046005
.
27.
Dai
,
Z.
,
Gorb
,
S. N.
, and
Schwarz
,
U.
,
2002
, “
Roughness-Dependent Friction Force of the Tarsal Claw System in the Beetle Pachnoda Marginata (Coleoptera, Scarabaeidae)
,”
J. Exp. Biol.
,
205
(
16
), pp.
2479
2488
.
28.
Parness
,
A.
,
Frost
,
M.
,
Thatte
,
N.
,
King
,
J. P.
,
Witkoe
,
K.
,
Nevarez
,
M.
,
Garrett
,
M.
,
Aghazarian
,
H.
, and
Kennedy
,
B.
,
2013
, “
Gravity-Independent Rock-Climbing Robot and a Sample Acquisition Tool With Microspine Grippers
,”
J. Field Rob.
,
30
(
6
), pp.
897
915
.
29.
Asbeck
,
A. T.
,
Kim
,
S.
,
Cutkosky
,
M. R.
,
Provancher
,
W. R.
, and
Lanzetta
,
M.
,
2006
, “
Scaling Hard Vertical Surfaces With Compliant Microspine Arrays
,”
Int. J. Rob. Res.
,
25
(
12
), pp.
1165
1179
.
30.
Asbeck
,
A. T.
,
2010
,
Compliant Directional Suspensions for Climbing with Spines and Adhesives
,
Stanford University
,
Stanford, CA
.
31.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2017
,
Modern Robotics
,
Cambridge University Press
,
Cambridge, UK
.
32.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1983
, “
The Use of Kane's Dynamical Equations in Robotics
,”
Int. J. Rob. Res.
,
2
(
3
), pp.
3
21
.
33.
Fang
,
S.
,
Wu
,
X.
,
Zhou
,
W.
, and
Wang
,
X.
,
2022
, “
A Three-Dimensional Force Measuring Platform With Six-Degrees of Freedom Motion Directions
,”
Proceedings of the IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
,
Chongqing, China
,
Aug. 05–07
, pp.
312
317
.
34.
Shi
,
S.
,
Fang
,
S.
,
Wu
,
X.
, and
Wang
,
X.
,
2021
, “
Gait Design and Foot Trajectory Planning for a Wall-Climbing Robot With Spiny Toes
,”
Proceedings of the International Conference on Intelligent Robotics and Applications (ICIRA)
,
Yantai, China
,
Oct. 22–25
, pp.
825
835
.
35.
Holmes
,
P.
,
Full
,
R. J.
,
Koditschek
,
D.
, and
Guckenheimer
,
J.
,
2006
, “
The Dynamics of Legged Locomotion: Models, Analyses, and Challenges
,”
SIAM Rev.
,
48
(
2
), pp.
207
304
.
You do not currently have access to this content.