Abstract

Manipulators are increasingly being called upon to perform a wide range of tasks. This paper explores the maximal distance throwing task for robotic manipulators and shows that this characteristic can be incorporated in the kinematic design process. Indeed, knowing the maximum distance that a manipulator can throw objects is useful in determining the viability of certain throwing tasks it might be called upon to execute. This paper studies three optimization problems: optimizing the release state to maximize the throwing distance, optimizing the kinematic trajectory subject to position, velocity, acceleration, and jerk constraints, and finally optimizing the kinematic design of manipulators to maximize the workspace as well as the throwing distance. Three manipulator architectures are used as case studies for these optimizations: a planar RR, a spatial RRR, and a wrist-partitioned 6R manipulator.

References

1.
Aboaf
,
E. W.
,
Atkeson
,
C. G.
, and
Reinkensmeyer
,
D. J.
,
1988
, “
Task-Level Robot Learning
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
,
IEEE
, pp.
1309
1310
.
2.
Kolahdouz
,
M.-R.
, and
Mahjoob
,
M. J.
,
2010
, “
A Reinforcement Learning Approach to Dynamic Object Manipulation in Noisy Environment
,”
Int. J. Innov. Comput. Inform. Control
,
6
(
4
), pp.
1615
1622
.
3.
Kober
,
J.
,
Öztop
,
E.
, and
Peters
,
J.
,
2011
, “
Reinforcement Learning to Adjust Robot Movements to New Situations
,”
international joint conference on Artificial Intelligence
,
Barcelona, Catalonia, Spain
,
July 16–22
, Vol. 22, p.
2650
.
4.
Kim
,
S.
, and
Doncieux
,
S.
,
2017
, “
Learning Highly Diverse Robot Throwing Movements Through Quality Diversity Search
,”
Proceedings of the Genetic and Evolutionary Computation Conference Companion
,
Berlin, Germany
,
July 15–19
, ACM, pp.
1177
1178
.
5.
Kato
,
N.
,
Matsuda
,
K.
, and
Nakamura
,
T.
,
1996
, “
Adaptive Control for a Throwing Motion of a 2 Dof Robot
,”
MIE Proceedings, 1996 4th International Workshop on Advanced Motion Control, 1996 (AMC’96), Vol. 1
,
Tsu-City, Mie-Pref., Japan
,
Mar. 18–21
, IEEE, pp.
203
207
.
6.
Buehler
,
M.
, and
Koditschek
,
D. E.
,
1987
, “
Robotics in an Intermittent Dynamical Environment: A Prelude to Juggling
,”
IEEE Conference on Decision and Control
,
Los Angeles, CA
,
Dec. 11
.
7.
Aboaf
,
E. W.
,
Drucker
,
S. M.
, and
Atkeson
,
C. G.
,
1989
, “
Task-Level Robot Learning: Juggling a Tennis Ball More Accurately
,”
1989 IEEE International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
, IEEE, pp.
1290
1295
.
8.
Buehler
,
M.
,
Koditschek
,
D. E.
, and
Kindlmann
,
P.
,
1990
, “
Planning and Control of Robotic Juggling Tasks
,”
Int. J. Rob. Res.
,
13
(
2
), pp.
101
118
.
9.
Sakaguchi
,
T.
,
Masutani
,
Y.
, and
Miyazaki
,
F.
,
1991
, “
A Study on Juggling Tasks
,”
Proceedings IROS’91. IEEE/RSJ International Workshop on Intelligent Robots and Systems’ 91, Intelligence for Mechanical Systems
,
Osaka, Japan
,
Nov. 3–5
, IEEE, pp.
1418
1423
.
10.
Rizzi
,
A. A.
, and
Koditschek
,
D. E.
,
1992
, “
Progress in Spatial Robot Juggling
,”
Proceedings, 1992 IEEE International Conference on Robotics and Automation, 1992
,
Nice, France
,
May 12–14
, IEEE, pp.
775
780
.
11.
Buehler
,
M.
,
Koditschek
,
D. E.
, and
Kindlmann
,
P. J.
,
1994
, “
Planning and Control of Robotic Juggling and Catching Tasks
,”
Int. J. Rob. Res.
,
13
(
2
), pp.
101
118
.
12.
Sanfelice
,
R. G.
,
Teel
,
A. R.
, and
Sepulchre
,
R.
,
2007
, “
A Hybrid Systems Approach to Trajectory Tracking Control for Juggling Systems
,”
2007 46th IEEE Conference on Decision and Control
,
New Orleans, LA
,
Dec. 12–14
, IEEE, pp.
5282
5287
.
13.
Nguyen
,
H. N.
, and
Olaru
,
S.
,
2013
, “
Hybrid Modelling and Constrained Control of Juggling Systems
,”
Int. J. Syst. Sci.
,
44
(
2
), pp.
306
320
.
14.
Nagendran
,
A.
,
Crowther
,
W.
, and
Richardson
,
R.
,
2011
, “
Dynamic Capture of Free-Moving Objects
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
225
(
8
), pp.
1054
1067
.
15.
Kim
,
J. H.
,
2011
, “
Optimization of Throwing Motion Planning for Whole-Body Humanoid Mechanism: Sidearm and Maximum Distance
,”
Mech. Mach. Theory
,
46
(
4
), pp.
438
453
.
16.
Lynch
,
K. M.
, and
Mason
,
M. T.
,
1996
, “
Dynamic Underactuated Nonprehensile Manipulation
,”
Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems’ 96, IROS 96
,
Osaka, Japan
,
Nov. 4–8
, Vol. 2, IEEE, pp.
889
896
.
17.
Miyashita
,
H.
,
Yamawaki
,
T.
, and
Yashima
,
M.
,
2009
, “
Control for Throwing Manipulation by One Joint Robot
,”
IEEE International Conference on Robotics and Automation, 2009 (ICRA’09)
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
1273
1278
.
18.
Mori
,
W.
,
Ueda
,
J.
, and
Ogasawara
,
T.
,
2009
, “
1-dof Dynamic Pitching Robot That Independently Controls Velocity, Angular Velocity, and Direction of a Ball: Contact Models and Motion Planning
,”
IEEE International Conference on Robotics and Automation, 2009 (ICRA’09)
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
1655
1661
.
19.
Mori
,
W.
,
Ueda
,
J.
, and
Ogasawara
,
T.
,
2010
, “
A 1-dof Dynamic Pitching Robot That Independently Controls Velocity, Angular Velocity and Direction of a Ball
,”
Adv. Rob.
,
24
(
5–6
), pp.
921
942
.
20.
Mettin
,
U.
,
Shiriaev
,
A. S.
,
Freidovich
,
L. B.
, and
Sampei
,
M.
,
2010
, “
Optimal Ball Pitching With an Underactuated Model of a Human Arm
,”
2010 IEEE International Conference on Robotics and Automation (ICRA)
,
Anchorage, AK
,
May 3–7
, IEEE, pp.
5009
5014
.
21.
Shoji
,
T.
,
Nakaura
,
S.
, and
Sampei
,
M.
,
2010
, “
Throwing Motion Control of the Springed Pendubot Via Unstable Zero Dynamics
,”
2010 IEEE International Conference on Control Applications (CCA), IEEE
, pp.
1602
1607
.
22.
Mettin
,
U.
, and
Shiriaev
,
A. S.
,
2011
, “
Ball-Pitching Challenge With an Underactuated Two-Link Robot Arm
,”
IFAC Proc. Vol.
,
44
(
1
), pp.
11399
11404
.
23.
Yedeg
,
E. L.
, and
Wadbro
,
E.
,
2013
, “
State Constrained Optimal Control of a Ball Pitching Robot
,”
Mech. Mach. Theory
,
69
(
1
), pp.
337
349
.
24.
Tomori
,
H.
,
Majima
,
T.
,
Ishihara
,
H.
, and
Nakamura
,
T.
,
2017
, “
Throwing Motion With Instantaneous Force Using a Variable Viscoelastic Joint Manipulator
,”
J. Intell. Mater. Syst. Struct.
,
28
(
8
), pp.
999
1009
.
25.
Lombai
,
F.
, and
Szederkényi
,
G.
,
2009
, “
Throwing Motion Generation Using Nonlinear Optimization on a 6-Degree-of-Freedom Robot Manipulator
,”
IEEE International Conference on Mechatronics, 2009 (ICM 2009)
,
Malaga, Spain
,
Apr. 14–17
, IEEE, pp.
1
6
.
26.
Frank
,
H.
,
Mittnacht
,
A.
, and
Scheiermann
,
J.
,
2009
, “
Throwing of Cylinder-Shaped Objects
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009 (AIM 2009)
,
Singapore
,
July 14–17
, IEEE, pp.
59
64
.
27.
Lofaro
,
D. M.
,
Sun
,
C.
, and
Oh
,
P.
,
2012
, “
Humanoid Pitching at a Major League Baseball Game: Challenges, Approach, Implementation and Lessons Learned
,”
2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids)
,
Osaka, Japan
,
Nov. 29–Dec. 1
, IEEE, pp.
423
428
.
28.
Zhang
,
Y.
,
Luo
,
J.
, and
Hauser
,
K.
,
2012
, “
Sampling-Based Motion Planning With Dynamic Intermediate State Objectives: Application to Throwing
,”
2012 IEEE International Conference on Robotics and Automation (ICRA)
,
Saint Paul, MN
,
May 14–18
, IEEE, pp.
2551
2556
.
29.
Okada
,
M.
,
Pekarovskiy
,
A.
, and
Buss
,
M.
,
2015
, “
Robust Trajectory Design for Object Throwing Based on Sensitivity for Model Uncertainties
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE, pp.
3089
3094
.
30.
Okada
,
M.
,
Oniwa
,
S.
, and
Hijikata
,
W.
,
2018
, “
Robust Throwing Design Based on Dynamic Sensitivity Analysis
,”
Mech. Eng. J.
,
5
(
1
), pp.
17
00442
.
31.
Sato
,
A.
,
Sato
,
O.
,
Takahashi
,
N.
, and
Kono
,
M.
,
2007
, “
Trajectory for Saving Energy of a Direct-Drive Manipulator in Throwing Motion
,”
Artif. Life Rob.
,
11
(
1
), pp.
61
66
.
32.
Senoo
,
T.
,
Namiki
,
A.
, and
Ishikawa
,
M.
,
2008
, “
High-Speed Throwing Motion Based on Kinetic Chain Approach
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, IEEE, pp.
3206
3211
.
33.
Patel
,
S.
, and
Sobh
,
T.
,
2015
, “
Task Based Synthesis of Serial Manipulators
,”
J. Adv. Res.
,
6
(
3
), pp.
479
492
.
34.
Miyazaki
,
T.
, and
Sanada
,
K.
,
2017
, “
Experimental Validation of an Optimum Design Method for a Ball Throwing Robot Considering Degrees of Freedom, Link Parameters, and Motion Pattern
,”
JSME Mech. Eng. J.
,
4
(
5
), pp.
17
00147
.
35.
Erumalla
,
S. R.
,
Pasupuleti
,
S.
, and
Ryu
,
J.-C.
,
2018
, “
Throwing, Catching, and Balancing of a Disk With a Disk-Shaped End Effector on a Two-Link Manipulator
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
054501
.
36.
Bombile
,
M.
, and
Billard
,
A.
,
2023
, “
Bimanual Dynamic Grabbing and Tossing of Objects Onto a Moving Target
,”
Rob. Auton. Syst.
,
167
, p.
104481
.
37.
Kasaei
,
H.
, and
Kasaei
,
M.
,
2023
, “
Throwing Objects Into a Moving Basket While Avoiding Obstacles
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, IEEE, pp.
3051
3057
.
You do not currently have access to this content.