Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Bio-inspiration can be used in the development of novel dextrous and energy-efficient manipulators. This paper focuses on planar manipulators inspired by the bird neck, built upon stacking a series of tensegrity X-joints. The manipulators are actuated with four tendons and have different numbers of modules, with or without offsets. The objective of this work is to study the influence of offsets, number of modules, geometry of the joints, configuration at rest of the manipulators, and actuation scheme on the size of the tension-feasible workspace (TFW). The spring constants of the X-joints are determined so that the configuration at rest features a desired end-effector (EE) pose with minimal stiffness to ensure stability. Our study demonstrates that increasing the number of modules results in a larger TFW, although the number of active tendons is fixed. We find that the TFW can be maximized with appropriate modification of the joint geometry. Additionally, we explore the influence of bio-inspired approaches on the manipulator configuration at rest and actuation scheme in relation to the TFW. In addition, we conduct an analysis of the EE pose stiffness, revealing that offsets decrease this stiffness, while an optimal number of modules exists to achieve maximum stiffness. We observed that increasing the width of the manipulator generally enhances stiffness, while the configuration at rest and the actuation have little effects. Furthermore, experiments were conducted to validate the methodologies.

References

1.
Fasquelle
,
B.
,
Furet
,
M.
,
Khanna
,
P.
,
Chablat
,
D.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2020
, “
A Bio-inspired 3-dof Light-Weight Manipulator With Tensegrity X-Joints
,”
2020 IEEE International Conference on Robotics and Automation
,
Virtual
,
May 31–Aug. 31
,
IEEE
, pp.
5054
5060
.
2.
Van Riesen
,
A.
,
Furet
,
M.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2019
, “
Dynamic Analysis and Control of an Antagonistically Actuated Tensegrity Mechanism
,”
ROMANSY 22—Robot Design, Dynamics and Control
,
Rennes, France
,
June 25–28
,
Springer
, pp.
481
490
.
3.
Trivedi
,
D.
,
Rahn
,
C.
,
Kier
,
W.
, and
Parker
,
Y.
,
2008
, “
Soft Robotics: Biological Inspiration, State of the Art, Future Research
,”
Appl. Bionics Biomech.
,
5
(
3
), p.
520417
.
4.
Hannan
,
M.
, and
Walker
,
I.
,
2000
, “
Analysis and Initial Experiments for a Novel Elephant’s Trunk Robot
,”
Proceedings 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Takamatsu, Japan
,
Oct. 31–Nov. 5
, Vol. 1, pp.
330
337
.
5.
Guan
,
Q.
,
Sun
,
J.
,
Liu
,
Y.
,
Wereley
,
N. M.
, and
Leng
,
J.
,
2020
, “
Novel Bending and Helical Extensile/Contractile Pneumatic Artificial Muscles Inspired by Elephant Trunk
,”
Soft Rob.
,
7
(
5
), pp.
597
614
.
6.
Liu
,
Y.
,
Ge
,
Z.
,
Yang
,
S.
,
Walker
,
I. D.
, and
Ju
,
Z.
,
2019
, “
Elephant’s Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051008
.
7.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
.
8.
Buckingham
,
R.
,
2002
, “
Snake Arm Robots
,”
Ind. Rob.
,
29
(
3
), pp.
242
245
.
9.
Porez
,
M.
,
Boyer
,
F.
, and
Ijspeert
,
A. J.
,
2014
, “
Improved Lighthill Fish Swimming Model for Bio-inspired Robots: Modeling, Computational Aspects and Experimental Comparisons
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1322
1341
.
10.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
Dec.
), pp.
1261
1280
.
11.
Russo
,
M.
,
Sadati
,
S. M. H.
,
Dong
,
X.
,
Mohammad
,
A.
,
Walker
,
I. D.
,
Bergeles
,
C.
,
Xu
,
K.
, and
Axinte
,
D. A.
,
2023
, “
Continuum Robots: An Overview
,”
Adv. Intell. Syst.
,
5
(
5
), p.
2200367
.
12.
Della Santina
,
C.
,
Duriez
,
C.
, and
Rus
,
D.
,
2023
, “
Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges
,”
IEEE Control Syst.
,
43
(
3
), pp.
30
65
.
13.
Armanini
,
C.
,
Boyer
,
F.
,
Mathew
,
A. T.
,
Duriez
,
C.
, and
Renda
,
F.
,
2023
, “
Soft Robots Modeling: A Structured Overview
,”
IEEE Trans. Rob.
,
39
(
3
), pp.
1728
1748
.
14.
Rao
,
P.
,
Peyron
,
Q.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
,”
Front. Rob. AI
,
7
, p.
630245
.
15.
Rucker
,
D. C.
, and
Webster III
,
R. J.
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
.
16.
Starke
,
J.
,
Amanov
,
E.
,
Chikhaoui
,
M. T.
, and
Burgner-Kahrs
,
J.
,
2017
, “
On the Merits of Helical Tendon Routing in Continuum Robots
,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE
,
Vancouver, BC
,
Sept. 24–28
, pp.
6470
6476
.
17.
Barrientos-Diez
,
J.
,
Russo
,
M.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2023
, “
Asymmetric Continuum Robots
,”
IEEE Rob. Autom. Lett.
,
8
(
3
), pp.
1279
1286
.
18.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
19.
Boehler
,
Q.
,
Charpentier
,
I.
,
Vedrines
,
M.
, and
Renaud
,
P.
,
2015
, “
Definition and Computation of Tensegrity Mechanism Workspace
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044502
.
20.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-x Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
21.
Chablat
,
D.
,
Wenger
,
P.
,
Majou
,
F.
, and
Merlet
,
J. P.
,
2004
, “
An Interval Analysis Based Study for the Design and the Comparison of Three-Degrees-of-Freedom Parallel Kinematic Machines
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
615
624
.
22.
Testard
,
N. J. S.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2023
, “Comparison Analysis of Tendon-Driven Manipulators Based on Their Wrench Feasible Workspace,”
Cable-Driven Parallel Robots
,
Mechanisms and Machine Science
,
S.
Caro
,
A.
Pott
, and
T.
Bruckmann
, eds.,
Springer Nature Switzerland
,
Cham
, pp.
121
133
.
23.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
24.
Carricato
,
M.
, and
Merlet
,
J.-P.
,
2012
, “
Stability Analysis of Underconstrained Cable-Driven Parallel Robots
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
288
296
.
25.
Furet
,
M.
,
Abourachid
,
A.
,
Bohmer
,
C.
,
Chummunb
,
V.
,
Chevallereau
,
C.
,
Cornette
,
R.
,
Bernardie
,
X. D. L.
, and
Wenger
,
P.
,
2021
, “
Estimating Motion Between Avian Vertebrae by Contact Modeling of Joint Surfaces
,”
Comput. Methods Biomech. Biomed. Eng.
,
25
(
2
), pp.
123
131
.
26.
Muralidharan
,
V.
, and
Wenger
,
P.
,
2021
, “
Optimal Design and Comparative Study of Two Antagonistically Actuated Tensegrity Joints
,”
Mech. Mach. Theory
,
159
, p.
104249
.
27.
Muralidharan
,
V.
,
Testard
,
N.
,
Chevallereau
,
C.
,
Abourachid
,
A.
, and
Wenger
,
P.
,
2023
, “
Variable Stiffness and Antagonist Actuation for Cable-Driven Manipulators Inspired by the Bird Neck
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
035002
.
28.
Terray
,
L.
,
Plateau
,
O.
,
Abourachid
,
A.
,
Böhmer
,
C.
,
Delapré
,
A.
,
la Bernardie
,
X.
, and
Cornette
,
R.
,
2020
, “
Modularity of the Neck in Birds (Aves)
,”
Evol. Biol.
,
47
(
2
), pp.
97
110
.
29.
Fasquelle
,
B.
,
Khanna
,
P.
,
Chevallereau
,
C.
,
Chablat
,
D.
,
Creusot
,
D.
,
Jolivet
,
S.
,
Lemoine
,
P.
, and
Wenger
,
P.
,
2021
, “
Identification and Control of a 3-x Cable-Driven Manipulator Inspired From the Bird Neck
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011005
.
30.
Testard
,
N. J. S.
,
Chevallereau
,
C.
, and
Wenger
,
P.
,
2023
, “Dynamics and Computed Torque Control Stability of an Under-Actuated Tendon-Driven Manipulator,”
Advances in Mechanism and Machine Science
,
Mechanisms and Machine Science
,
M.
Okada
, ed.,
Springer Nature Switzerland
,
Cham
, pp.
332
341
.
31.
Vijaykumar
,
R.
,
Waldron
,
K.
, and
Tsai
,
M.
,
1986
, “
Geometric Optimization of Serial Chain Manipulator Structures for Working Volume and Dexterity
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
91
103
.
32.
Albu-Schaffer
,
A.
,
Fischer
,
M.
,
Schreiber
,
G.
,
Schoeppe
,
F.
, and
Hirzinger
,
G.
,
2004
, “
Soft Robotics: What Cartesian Stiffness Can Obtain With Passively Compliant, Uncoupled Joints
?”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566)
,
Sendai, Japan
,
Sept. 28–Oct. 2
, Vol. 4,
IEEE
, pp.
3295
3301
.
33.
Muralidharan
,
V.
,
Wenger
,
P.
, and
Chevallereau
,
C.
,
2022
, “Kinematic and Static Analysis of a Cable-Driven 2-X Tensegrity Manipulator for Two Actuation Strategies,”
Advances in Robot Kinematics 2022
,
O.
Altuzarra
and
A.
Kecskeméthy
, eds.,
Springer International Publishing
,
Bilbao, Spain
, pp.
149
159
.
34.
Marek
,
R. D.
,
Falkingham
,
P. L.
,
Benson
,
R. B. J.
,
Gardiner
,
J. D.
,
Maddox
,
T. W.
, and
Bates
,
K. T.
,
2021
, “
Evolutionary Versatility of the Avian Neck
,”
Proc. R. Soc. B: Biol. Sci.
,
288
, p.
20203150
.
35.
Muralidharan
,
V.
,
Wenger
,
P.
, and
Chevallereau
,
C.
,
2024
, “
Design Considerations and Workspace Computation of 2-x and 2-r Planar Cable-Driven Tensegrity-Inspired Manipulators
,”
Mech. Mach. Theory
,
195
, p.
105610
.
You do not currently have access to this content.