Abstract

Offset joints are widely used in robotics, and literature has demonstrated that axial offset joints can expand the workspace. However, the hybrid offset joint, which incorporates offsets in three orthogonal directions (x, y, and z axes), provides a more flexible and comprehensive range of motion compared to traditional axial offset joints. Therefore, a comprehensive understanding of the workspace of hybrid offset joints with three-directional offsets is essential. First, through a parameter model, the interference motion of hybrid offset joints is studied, considering three different directional offsets and obtaining analytical expressions. Next, based on coordinate transformations, the workspace of this joint is investigated, resulting in corresponding theoretical formulas. In addition, the influence of offset amounts in various directions on the joint’s workspace is examined. Finally, the application of hybrid offset joints in parallel manipulators (PMs) is introduced, highlighting their practical engineering value. Through comparative analysis, it is found that lateral offsets on the x- and y-axes adjust the maximum rotation angles, while the z-axis offset expands the rotational range of these joints. Moreover, by increasing the limit rotation angle of the passive joint in a specific direction, the application of hybrid offset joints in PMs can impact the workspace. These findings offer valuable insights for the design of hybrid offset joints and their applications in robotics.

References

1.
Li
,
Y.
,
Li
,
M.
, and
Sun
,
L.
,
2007
, “
Design and Passable Ability of Transitions Analysis of a Six Legged Wall-Climbing Robot
,”
2007 International Conference on Mechatronics and Automation
,
Harbin, China
,
Aug. 5–8
, IEEE, pp.
800
804
.
2.
Michałek
,
M. M.
,
Patkowski
,
B.
, and
Gawron
,
T.
,
2020
, “
Modular Kinematic Modelling of Articulated Buses
,”
IEEE Trans. Veh. Technol.
,
69
(
8
), pp.
8381
8394
.
3.
Yen
,
P.-L.
,
Wang
,
C.-H.
,
Lin
,
H.-T.
, and
Hung
,
S.-S.
,
2019
, “
Optimization Design for a Compact Redundant Hybrid Parallel Kinematic Machine
,”
Robot. Comput.-Integr. Manuf.
,
58
, pp.
172
180
.
4.
Zhu
,
Y.
,
Zhou
,
S.
,
Poramate
,
M.
, and
Li
,
R.
,
2021
, “
Design, Analysis, and Neural Control of a Bionic Parallel Mechanism
,”
Front. Mech. Eng.
,
16
, pp.
468
486
.
5.
Hoevenaars
,
A. G.
,
Gosselin
,
C.
,
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
Experimental Validation of Jacobian-Based Stiffness Analysis Method for Parallel Manipulators With Nonredundant Legs
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041002
.
6.
Hoevenaars
,
A. G.
,
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
Jacobian-Based Stiffness Analysis Method for Parallel Manipulators With Non-redundant Legs
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
230
(
3
), pp.
341
352
.
7.
Zijie
,
C.
,
Chuang
,
S.
,
Hongwei
,
G.
,
Rongqiang
,
L.
, and
Zongquan
,
D.
,
2022
, “
Design and Accuracy Analysis of a New High-Rigidity Modular Planar Deployable Antenna Mechanism
,”
Eng. Struct.
,
253
, p.
113770
.
8.
Lin
,
J.-W.
,
Zhao
,
Y.
,
Wu
,
Q.-W.
,
Han
,
H.-S.-A.-Q.-E.
,
Yu
,
P.
, and
Zhang
,
Y.
,
2023
, “
Design and Analysis of a Triangular Bi-Axial Flexure Hinge
,”
Proc. Inst. Mech. Eng. Pt. C J. Mechan. Eng. Sci.
,
237
(
21
), pp.
4991
5004
.
9.
Bruyas
,
A.
,
Geiskopf
,
F.
, and
Renaud
,
P.
,
2015
, “
Design and Modeling of a Large Amplitude Compliant Revolute Joint: The Helical Shape Compliant Joint
,”
ASME J. Mech. Des.
,
137
(
8
), p.
085003
.
10.
Qiu
,
X.
,
Yang
,
L.
,
Hou
,
Y.
, and
Zhou
,
Y.
,
2015
, “
Configuration and Workspace Analysis of a Novel Bionic Passive Spherical Hinge With Large Workspace
,”
Chin. Mech. Eng.
,
26
(
3
), p.
354
.
11.
Kim
,
S.
,
Sung
,
E.
, and
Park
,
J.
,
2023
, “
Arc Joint: Anthropomorphic Rolling Contact Joint With Kinematically Variable Torsional Stiffness
,”
IEEE Robot. Autom. Lett.
,
8
(
3
), pp.
1810
1817
.
12.
Ruan
,
Q.
,
Yang
,
F.
,
Yue
,
H.
,
Li
,
Q.
,
Li
,
L.
, and
Liu
,
R.
,
2022
, “
A Ball Joint With Continuously Adjustable Load Capacity Based on Positive Pressure Method
,”
IEEE Robot. Autom. Lett.
,
7
(
3
), pp.
8415
8422
.
13.
Kargar
,
S. M.
,
Parmiggiani
,
A.
,
Baggetta
,
M.
,
Ottonello
,
E.
,
Hao
,
G.
, and
Berselli
,
G.
,
2024
, “
Optimization of a Tetrahedron Compliant Spherical Joint Via Computer-Aided Engineering Tools
,”
Int. J. Adv. Manuf. Technol.
,
132
, pp.
1151
1162
.
14.
Großmann
,
K.
, and
Kauschinger
,
B.
,
2012
, “
Eccentric Universal Joints for Parallel Kinematic Machine Tools: Variants and Kinematic Transformations
,”
Prod. Eng.
,
6
(
4–5
), pp.
521
529
.
15.
Watada
,
R.
, and
Ohsaki
,
M.
,
2023
, “
N-Gonal Multilayer Symmetric Revolute Linkage Deployed From Bundle to Surface of Revolution
,”
ASME J. Mech. Des.
,
145
(
11
), p.
113301
.
16.
Gloess
,
R.
, and
Lula
,
B.
,
2010
, “
Challenges of Extreme Load Hexapod Design and Modularization for Large Ground-Based Telescopes
,”
Modern Technologies in Space- and Ground-based Telescopes and Instrumentation
,
San Diego, CA
,
July 21
, Vol. 7739, SPIE, pp.
689
699
.
17.
Hung
,
S.-S.
,
Hsu
,
A. S.-F.
,
Ho
,
T.-H.
,
Chi
,
C.-H.
, and
Yen
,
P.-L.
,
2021
, “
A Robotized Handheld Smart Tool for Orthopedic Surgery
,”
Int. J. Med. Robot.
,
17
(
5
), p.
e2289
.
18.
Hu
,
B.
, and
Lu
,
Y.
,
2008
, “
Analyses of Kinematics, Statics, and Workspace of a 3-RR P RR Parallel Manipulator and Its Three Isomeric Mechanisms
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
222
(
9
), pp.
1829
1837
.
19.
Ji
,
P.
, and
Wu
,
H.
,
2003
, “
Kinematics Analysis of an Offset 3-UPU Translational Parallel Robotic Manipulator
,”
Rob. Auton. Syst.
,
42
(
2
), pp.
117
123
.
20.
Han
,
H.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Han
,
C.
,
Li
,
A.
, and
Xu
,
Z.
,
2021
, “
Kinematic Analysis and Performance Test of a 6-dof Parallel Platform With Dense Ball Shafting as a Revolute Joint
,”
Appl. Sci.
,
11
(
14
), p.
6268
.
21.
Han
,
H.
,
Han
,
C.
,
Xu
,
Z.
,
Zhu
,
M.
,
Yu
,
Y.
, and
Wu
,
Q.
,
2019
, “
Kinematics Analysis and Testing of Novel 6-P-RR-R-RR Parallel Platform With Offset RR-Joints
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
10
), pp.
3512
3530
.
22.
Han
,
H.
, and
Angeles
,
J.
,
2024
, “
Dynamics of a Parallel-Kinematics Machine With Six Pairs of Offset Joints
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031015
.
23.
Zhang
,
Y.
,
Han
,
H.
,
Xu
,
Z.
,
Han
,
C.
,
Yu
,
Y.
,
Mao
,
A.
, and
Wu
,
Q.
,
2021
, “
Kinematics Analysis and Performance Testing of 6-RR-RP-RR Parallel Platform With Offset RR-Hinges Based on Denavit-Hartenberg Parameter Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
18
), pp.
3519
3533
.
24.
Zhang
,
Y.
,
Han
,
H.
,
Zhang
,
H.
,
Xu
,
Z.
,
Xiong
,
Y.
,
Han
,
K.
, and
Li
,
Y.
,
2022
, “
Acceleration Analysis of 6-RR-RP-RR Parallel Manipulator With Offset Hinges by Means of a Hybrid Method
,”
Mech. Mach. Theory
,
169
, p.
104661
.
25.
Morell
,
A.
,
Tarokh
,
M.
, and
Acosta
,
L.
,
2013
, “
Solving the Forward Kinematics Problem in Parallel Robots Using Support Vector Regression
,”
Eng. Appl. Artif. Intell.
,
26
(
7
), pp.
1698
1706
.
26.
Li
,
P.
,
Han
,
H.
,
Liu
,
C.
,
Ren
,
B.
,
Wu
,
Q.
, and
Xu
,
Z.
,
2023
, “
Workspace Analysis of Axial Offset Joint Based on Parameterization
,”
Robotica
,
41
(
9
), pp.
2882
2906
.
You do not currently have access to this content.