This paper presents a novel multifingered hand with an articulated palm that makes the hand adaptable and reconfigurable. The posture of the new multifingered hand is enhanced by the additional motion of the palm and the workspace of fingers is augmented by the palm workspace. To analyze this integrated workspace, this paper introduces finger-operation planes to relate the finger motion to the palm motion and its configuration. Normals of these operation planes are used to construct a Gauss map. Adding an additional dimension, a four-dimensional ruled surface can be generated from this map to illustrate variation of posture. With the change of palm configurations, a posture manifold can be developed from the posture ruled surfaces. The workspace analysis is developed by introducing a palm workspace-triangle. This workspace-triangle evolves into a helical workspace-triangle tube when palm inputs vary and further develops into a four-dimensional presentation. This progresses into a set of workspaces of the multifingered hand by varying the palm configuration, leading to a larger workspace of the new multifingered hand as the union of the workspaces corresponding to individual palm configuration. This paper further investigates manipulability of the multifingered hand by modeling the contact point as a hypothetical spherical joint. Based on reciprocity relationship of screw systems, the finger Jacobian matrices and the hand Jacobian matrix are established. With singular value decomposition, manipulability of each finger is explored and the hand manipulability is revealed by the diagonal nature of the Jacobian matrix of the hand.

1.
Ceccarelli
,
M.
, 1995, “
A Synthesis Algorithm for Three-Revolute Manipulators by Using an Algebraic Formulation of Workspace Boundary
,”
ASME J. Mech. Des.
0161-8458,
117
(
2A
), pp.
298
302
.
2.
Kumar
,
A.
, and
Patel
,
M. S.
, 1986, “
Mapping the Manipulator Workspace Using Interactive Computer Graphics
,”
Int. J. Robot. Res.
0278-3649,
5
(
2
), pp.
122
130
.
3.
Cervantes-Sánchez
,
J. J.
,
Hernández-Rodríguez
,
J. C.
, and
Angeles
,
J.
, 2001, “
On the Kinematic Design of the 5R Planar, Symmetric Manipulator
,”
Mech. Mach. Theory
0094-114X,
36
(
11–12
), pp.
1301
1313
.
4.
Huang
,
T.
,
Wang
,
J.
, and
Whitehouse
,
D. J.
, 1999, “
Closed Form Solution to Workspace of Hexapod-Based Virtual Axis Machine Tools
,”
ASME J. Mech. Des.
0161-8458,
121
(
1
), pp.
26
31
.
5.
Snyman
,
J. A.
,
Plessis
,
L. J.
, and
Duffy
,
J.
, 2000, “
An Optimization Approach to the Determination of the Boundaries of Manipulator Workspaces
,”
ASME J. Mech. Des.
0161-8458,
122
(
4
), pp.
447
456
.
6.
Michelman
,
P.
, 1998, “
Precision Object Manipulation With a Multifingered Robot Hand
,”
IEEE Trans. Autom. Control
0018-9286,
14
(
1
), pp.
105
114
.
7.
Guan
,
Y. S.
, and
Zhang
,
H.
, 2003, Workspace of 2D Multifingered Manipulation, Nevada.
8.
Kerr
,
J.
, and
Roth
,
B.
, 1986, “
Analysis of Multifingered Hands
,”
Int. J. Robot. Res.
0278-3649,
4
(
4
), pp.
3
17
.
9.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton
.
10.
Cui
,
L.
, and
Dai
,
J. S.
, 2010, “
A Darboux Frame Based Formulation of Spin-Rolling Motion of Rigid Objects With Point Contact
,”
IEEE Transactions on Robotics
,
26
(
2
), pp.
383
388
.
11.
Xiong
,
Y. L.
,
Sanger
,
D. J.
, and
Kerr
,
D. R.
, 1992, “
Optimal Synthesis of Point Contact Restraint
,”
J. Mech. Eng. Sci.
0022-2542,
206
, pp.
95
103
.
12.
Xiong
,
Y. L.
,
Sanger
,
D. J.
, and
Kerr
,
D. R.
, 1993, “
Geometric Modelling of Bounded and Frictional Grasps
,”
Robotica
0263-5747,
11
(
2
), pp.
185
192
.
13.
Dai
,
J. S.
, and
Kerr
,
D. R.
, 1992, “
Analysis and Synthesis of Grasping in an Image Space
,”
Proceedings of the 22nd ASME Biennial Mechanisms Conference
, Scottsdale, AZ, DE Vol.
45
, pp.
283
291
.
14.
Trinkle
,
J. C.
,
Abel
,
J. M.
, and
Paul
,
R. P.
, 1988, “
An Investigation of Frictionless Enveloping Grasping in the Plane
,”
Int. J. Robot. Res.
0278-3649,
7
(
3
), pp.
33
51
.
15.
Luo
,
Z.
, and
Dai
,
J. S.
, 2006, “
Geometric Analysis and Characteristics of a Three-Fixed-Pivoted Multi-Phalanx Robotic Finger
,”
J. Mech. Eng. Sci.
0022-2542,
220
(
7
), pp.
1075
1082
.
16.
Tanev
,
T.
, and
Stoyanov
,
B.
, 2000, “
On the Performance Indexes for Robot Manipulators
,”
Problems of Engineering Cybernetics and Robotics, Bulgarian Academy of Sciences Journal
,
49
(
1
), pp.
64
70
.
17.
Khan
,
W. A.
, and
Angeles
,
J.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
168
178
.
18.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
, 1995, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints
,”
J. Mech. Eng. Sci.
0022-2542,
209
(
43
), pp.
263
271
.
19.
Chablat
,
D.
, and
Wenger
,
P.
, 2000, A New Three-DOF Parallel Mechanism: Milling Machine Applications, Chemnitz, Germany.
20.
Elkady
,
A.
,
Mohammed
,
M.
, and
Sobh
,
T.
, 2010, “
A New Algorithm for Measuring and Optimizing the Manipulability Index
,”
J. Intell. Robotic Syst.
0921-0296,
59
(
1
), pp.
75
86
.
21.
Bicchi
,
A.
, and
Prattichizzo
,
D.
, 2000, “
Manipulability of Cooperating Robots With Unactuated Joints and Closed-Chain Mechanisms
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
4
), pp.
336
345
.
22.
Pons
,
J. L.
,
Ceres
,
R.
, and
Pfeiffer
,
F.
, 1999, “
Multifingered Dextrous Robotics Hand Design and Control: A Review
,”
Robotica
0263-5747,
17
(
6
), pp.
661
674
.
23.
Bicchi
,
A.
, 2000, “
Hands for Dexterous Manipulation and Robust Grasping: A Difficult Road Toward Simplicity
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
652
662
.
24.
Salisbury
,
J. K.
, and
Craig
,
J. J.
, 1982, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Robot. Res.
0278-3649,
1
(
1
), pp.
4
17
.
25.
Jacobsen
,
S. C.
,
Wood
,
J. E.
,
Knutti
,
D. F.
, and
Biggers
,
K. B.
, 1984, “
The Utah/M.I.T. Dextrous Hand: Work in Progress
,”
Int. J. Robot. Res.
0278-3649,
3
(
4
), pp.
21
50
.
26.
Bekey
,
G. A.
,
Tomovic
,
R.
, and
Zeljkovic
,
I.
, 1989,
Dextrous Robot Hands
,
Springer-Verlag
,
New York
.
27.
Fukaya
,
N.
,
Toyama
,
S.
,
Asfour
,
T.
, and
Dillmann
,
R.
, 2000, “
Design of the Tuat/Karlsruhe Humanoid Hand
,”
Proceedings of IEEE/Robotics-Society-of-Japan International Conference on Intelligent Robots and Systems (IROS 2000)
, Vol.
1–3
, pp.
1754
1759
.
28.
Claudio
,
M.
, and
Gabriele
,
V.
, 1994, “
Implementation of Whole-Hand Manipulation Capability in the UB Hand System Design
,”
Adv. Rob.
0169-1864,
9
(
5
), pp.
547
560
.
29.
Lovchik
,
C.
, and
Diftler
,
M.
, 1999, “
The Robonaut Hand: A Dexterous Robot Hand for Space
,”
Proceedings of IEEE International Conference on Automation and Robotics
, Vol.
2
, pp.
907
912
.
30.
Butterfass
,
J.
,
Grebenstein
,
M.
, and
Liu
,
H.
, 2001, “
DLR-Hand II: Next Generation of a Dexterous Robot Hand
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Seoul, Korea, pp.
413
428
.
31.
Gao
,
X. H.
,
Jin
,
M. H.
,
Jiang
,
L.
,
Xie
,
Z. W.
,
He
,
P.
,
Yang
,
L.
,
Liu
,
Y. W.
,
Wei
,
R.
,
Cai
,
H. G.
,
Liu
,
H.
,
Butterfass
,
J.
,
Grebenstein
,
M.
,
Seitz
,
N.
, and
Hirzinger
,
G.
, 2003, The HIT/DLR Dexterous Hand: Work in Progress, Taipei, Taiwan.
33.
Townsend
,
W.
, 2000, “
The BarrettHand Grasper—Programmably Flexible Part Handling and Assembly
,”
Ind. Robot
0143-991X,
27
(
3
), pp.
181
188
.
34.
Higashimori
,
M.
,
Jeong
,
H.
,
Ishii
,
I.
,
Kaneko
,
M.
,
Namiki
,
A.
, and
Ishikawa
,
M.
, 2005, A New Four-Fingered Robot Hand With Dual Turning Mechanism, Barcelona, Spain.
35.
Dai
,
J. S.
, 2005, “
Robotic Hand With Palm Section Comprising Several Parts Able to Move Relative to Each Other
,” Patent No. WO/2005/105391, Priority date: Nov. 10, 2005 (International Patent No. PCT/GB2005/001665 and UK Patent No. GB04 095 48.5).
36.
Dai
,
J. S.
, and
Wang
,
D.
, 2007, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME J. Mech. Des.
0161-8458,
129
(
11
), pp.
1191
1198
.
37.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 1999, “
Mobility in Metamorphic Mechanism of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
0161-8458,
121
(
3
), pp.
375
382
.
38.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2005, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
837
840
.
39.
Ghafoor
,
A.
,
Dai
,
J. S.
, and
Duffy
,
J.
, 2004, “
Stiffness Modeling of a Soft-Finger Contact in Robotic Grasping
,”
ASME J. Mech. Des.
0161-8458,
126
(
4
), pp.
646
656
.
40.
Carmo
,
M. P.
, 1976,
Differential Geometry of Curves and Surfaces
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
41.
Romdhane
,
L.
, and
Duffy
,
J.
, 1990, “
Kinestatic Analysis of Multifingered Hands
,”
Int. J. Robot. Res.
0278-3649,
9
(
6
), pp.
3
18
.
42.
Dai
,
J. S.
, and
Rees Jones
,
J.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
0094-114X,
36
(
5
), pp.
633
651
.
43.
Yoshikawa
,
T.
, 1985, “
Manipulability of Robotic Mechanisms
,”
Int. J. Robot. Res.
0278-3649,
4
(
2
), pp.
3
9
.
44.
Paul
,
R. P.
, and
Stevenson
,
C. N.
, 1983, “
Kinematics of Robot Wrists
,”
Int. J. Robot. Res.
0278-3649,
2
(
1
), pp.
31
38
.
You do not currently have access to this content.