This paper presents a finite element method (FEM) for the kinematic solution of parallel manipulators (PMs), and this approach is applied to analyze the kinematics of a parallel hip joint manipulator (PHJM). The analysis and simulation results indicate that FEM can get accurate results of the kinematics of the PHJM, and the solution process shows that using FEM can solve nonlinear and linear kinematic problems in the same mathematical framework, which provides a theory base for establishing integrated model among different parameter models of the PHJM.
Issue Section:
Research Papers
References
1.
Özgür
, E.
, Nicolas
, A.
, and Philippe
, M.
, 2013
, “Linear Dynamic Modeling of Parallel Kinematic Manipulators From Observable Kinematic Elements
,” Mech. Mach. Theory
, 69
, pp. 73
–89
.10.1016/j.mechmachtheory.2013.05.0022.
Lu
, Y.
, and Hu
, B.
, 2007
, “Analyzing Kinematics and Solving Active/Constrained Forces of a 3SPU + UPR Parallel Manipulator
,” Mech. Mach. Theory
, 42
(10
), pp. 1298
–1313
.10.1016/j.mechmachtheory.2006.11.0023.
Zhang
, D.
, and Gao
, Z.
, 2012
, “Forward Kinematics, Performance Analysis, and Multi-Objective Optimization of a Bio-Inspired Parallel Manipulator
,” Rob. Comput.-Integr. Manuf.
, 28
(4
), pp. 484
–492
.10.1016/j.rcim.2012.01.0034.
Abbasnejad
, G.
, Daniali
, H. M.
, and Fathi
, A.
, 2012
, “Closed Form Solution for Direct Kinematics of a 4PUS + 1PS Parallel Manipulator
,” Sci. Iran.
, 19
(2
), pp. 320
–326
.10.1016/j.scient.2012.02.0155.
Cheng
, G.
, Yu
, J. L.
, and Gu
, W.
, 2012
, “Kinematic Analysis of 3SPS + 1PS Bionic Parallel Test Platform for Hip Joint Manipulator Based on Unit Quaternion
,” Rob. Comput.-Integr. Manuf.
, 28
(2
), pp. 257
–264
.10.1016/j.rcim.2011.09.0076.
Gan
, D. M.
, Liao
, Q. Z.
, Dai
, J. S.
, and Wei
, S. M.
, 2010
, “Design and Kinematics Analysis of a New 3CCC Parallel Mechanism
,” Robotica
, 28
(7
), pp. 1065
–1072
.10.1017/S02635747099905557.
Jaime
, G.
, Raúl
, L.
, José
, M. R.
, and Gürsel
, A.
, 2011
, “The Kinematics of Modular Spatial Hyper-Redundant Manipulators Formed From RPS-Type Limbs
,” Rob. Auton. Syst.
, 59
(1
), pp. 12
–21
.10.1016/j.robot.2010.09.0058.
Javad
, E.
, and Alireza
, A. T.
, 2010
, “A Novel Approach for Forward Position Analysis of a Double-Triangle Spherical Parallel Manipulator
,” Eur. J. Mech.-A/Solids
, 29
(3
), pp. 348
–355
.10.1016/j.euromechsol.2009.12.0019.
Sandipan
, B.
, and Ashitava
, G.
, 2008
, “An Algebraic Formulation of Kinematic Isotropy and Design of Isotropic 6-6 Stewart Platform Manipulators
,” Mech. Mach. Theory
, 43
(5
), pp. 591
–616
.10.1016/j.mechmachtheory.2007.05.00310.
Dhingra
, A. K.
, Almadi
, A. N.
, and Kohli
, D.
, 2001
, “Closed-Form Displacement and Coupler Curve Analysis of Planar Multi-Loop Mechanisms Using Gröbner Bases
,” Mech. Mach. Theory
, 36
(2
), pp. 273
–298
.10.1016/S0094-114X(00)00043-411.
Gan
, D. M.
, Liao
, Q. Z.
, Dai
, J. S.
, Wei
, S. M.
, and Seneviratne
, L. D.
, 2009
, “Forward Displacement Analysis of the General 6-6 Stewart Mechanism Using Grobner Bases
,” Mech. Mach. Theory
, 44
(9
), pp. 1640
–1647
.10.1016/j.mechmachtheory.2009.01.00812.
Ramachandran
, S.
, Nagarajan
, T.
, and Prasad
, N. S.
, 1992
, “A Finite Element Approach to the Design and Dynamic Analysis of Platform Type Robot Manipulators
,” Finite Elem. Anal. Des.
, 10
(4
), pp. 335
–350
.10.1016/0168-874X(92)90020-D13.
Rout
, B. K.
, and Mittal
, R. K.
, 2008
, “Optimal Manipulator Parameter Tolerance Selection Using Evolutionary Optimization Technique
,” Eng. Appl. Artif. Intell.
, 21
(4
), pp. 509
–524
.10.1016/j.engappai.2007.05.01114.
Nie
, S. H.
, Li
, B.
, Qiu
, A. H.
, and Gong
, S. G.
, 2011
, “Kinematic Configuration Analysis of Planar Mechanisms Based on Basic Kinematic Chains
,” Mech. Mach. Theory
, 46
(10
), pp. 1327
–1334
.10.1016/j.mechmachtheory.2011.05.01415.
Werff
, K. V.
, 1977
, “Kinematic and Dynamic Analysis of Mechanisms, A Finite Element Approach
,” Ph.D. thesis, Delft University, Delft, Netherlands.16.
Avile's
, R.
, Goizalde
, A.
, Enrique
, A.
, and Vicente
, G. H.
, 2000
, “A Finite Element Approach to the Position Problems in Open-Loop Variable Geometry Trusses
,” Finite Elem. Anal. Des.
, 34
(3–4
), pp. 233
–255
.10.1016/S0168-874X(99)00041-417.
Zarate
, I. O.
, Aguirrebeitia
, J.
, Avile
, R.
, and Fernandez
, I.
, 2011
, “A Finite Element Approach to the Inverse Dynamics and Vibrations of Variable Geometry Trusses
,” Finite Elem. Anal. Des.
, 47
(3
), pp. 220
–228
.10.1016/j.finel.2010.10.00918.
Aviles
, R.
, Hernandez
, A.
, Amezua
, E.
, and Altuzarra
, O.
, 2008
, “Kinematic Analysis of Linkages Based in Finite Elements and the Geometric Stiffness Matrix
,” Mech. Mach. Theory
, 43
(8
), pp. 964
–983
.10.1016/j.mechmachtheory.2007.07.00719.
Fernández-Bustos
, I.
, Agirrebeitia
, J.
, Ajuria
, G.
, and Angulo
, C.
, 2006
, “A New Finite Element to Represent Prismatic Joint Constraints in Mechanisms
,” Finite Elem. Anal. Des.
, 43
(1
), pp. 36
–50
.10.1016/j.finel.2006.06.01020.
Hernandez
, A.
, Altuzarra
, O.
, Aviles
, R.
, and Petuya
, V.
, 2003
, “Kinematic Analysis of Mechanisms Via a Velocity Equation Based in a Geometric Matrix
,” Mech. Mach. Theory
, 38
(12
), pp. 1413
–1429
.10.1016/S0094-114X(03)00095-821.
Aviles
, R.
, Ajuria
, M. B. G.
, Hormaza
, M. V.
, and Hernandez
, A.
, 1996
, “A Procedure Based on Finite Elements for the Solution of Nonlinear Problems in the Kinematic Analysis of Mechanisms
,” Finite Elem. Anal. Des.
, 22
(4
), pp. 305
–327
.10.1016/0168-874X(95)00017-NCopyright © 2015 by ASME
You do not currently have access to this content.