Modeling large deflections has been one of the most fundamental problems in the research community of compliant mechanisms. Although many methods are available, there still exists a need for a method that is simple, accurate, and can be applied to a vast variety of large deflection problems. Based on the beam-constraint model (BCM), we propose a new method for modeling large deflections called chained BCM (CBCM), which divides a flexible beam into a few elements and models each element by BCM. The approaches for determining the strain energy stored in a deflected beam and the stress distributed on it are also presented within the framework of CBCM. Several typical examples were analyzed and the results show CBCMs capabilities of modeling various large deflections of flexible beams in compliant mechanisms. Generally, CBCM can serve as an efficient and versatile tool for solving large deflection problems in a variety of compliant mechanisms.

References

1.
Slocum
,
A. H.
,
1992
,
Precision Machine Design
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
2.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
Gordon and Breach Science
,
New York
.
3.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
4.
Chen
,
G.
, and
Du
,
Y.
,
2012
, “
Double-Young Tristable Mechanisms (DYTMs)
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011007
.
5.
Blanding
,
D. L.
,
1999
,
Exact Constraint: Machine Design Using Kinematic Processing
,
ASME
, New York.
6.
Morsch
,
F. M.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2009
, “
Comparison of Methods for Large Deflection Analysis of a Cantilever Beam Under Free End Point Load Cases
,”
ASME
Paper No. DETC2009-86754.
7.
Zhang
,
A.
, and
Chen
,
G.
,
2013
, “
A Comprehensive Elliptic Integral Solution to the Large Deflection Problems of Thin Beams in Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021006
.
8.
Campanile
,
L. F.
, and
Hasse
,
A.
,
2008
, “
A Simple and Effective Solution of the Elastica Problem
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
12
), pp.
2513
2516
.
9.
Tolou
,
N.
, and
Herder
,
J. L.
,
2009
, “
A Semianalytical Approach to Large Deflections in Compliant Beams Under Point Load
,”
Math. Probl. Eng.
,
2009
(
2009
), p.
910896
.
10.
Banerjee
,
A.
,
Bhattacharya
,
B.
, and
Mallik
,
A. K.
,
2008
, “
Large Deflection of Cantilever Beams With Geometric Non-Linearity: Analytical and Numerical Approaches
,”
Int. J. Non-Linear Mech.
,
43
(
5
), pp.
366
376
.
11.
Midha
,
A.
,
Her
,
I.
, and
Salamon
,
B.
,
1992
, “
Methodology for Compliant Mechanisms Design. Part I—Introduction and Large-Deflection Analysis
,” 18th ASME Design Automation Conference, Scottsdale, AZ, Sept. 13–16.
12.
Awtar
,
S.
,
Slocum
,
A. H.
, and
Sevincer
,
E.
,
2007
, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
625
639
.
13.
Bi
,
S.
,
Zhao
,
H.
, and
Yu
,
J.
,
2009
, “
Modeling of a Cartwheel Flexural Pivot
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061010
.
14.
Holst
,
G. L.
,
Teichert
,
G. H.
, and
Jensen
,
B. D.
,
2013
, “
Modeling and Experiments of Buckling Modes and Deflection of Fixed-Guided Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051002
.
15.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
16.
Timoshenko
,
S. P.
,
1940
,
Strength of Materials
, 2nd ed.,
D. Van Nostrand Company
,
New York
.
17.
Hearn
,
E. J.
,
1977
,
Mechanics of Materials
,
Pergamon Press
,
Oxford, UK
.
18.
Kimball
,
C.
, and
Tsai
,
L. W.
,
2002
, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
223
235
.
19.
Su
,
H. J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.
20.
Chen
,
G.
,
Xiong
,
B.
, and
Huang
,
X.
,
2011
, “
Finding the Optimal Characteristic Parameters for 3R Pseudo-Rigid-Body Model Using an Improved Particle Swarm Optimizer
,”
J. Int. Soc. Precis. Eng. Nanotechnol.
,
35
(
3
), pp.
505
511
.
21.
Chen
,
G.
, and
Zhang
,
A.
,
2011
, “
Accuracy Evaluation of PRBM for Predicting Kinetostatic Behavior of Flexible Segments in Compliant Mechanisms
,”
ASME
Paper No. DETC2011-47117.
22.
Saxena
,
A.
, and
Kramer
,
S. N.
,
1998
, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
ASME J. Mech. Des.
,
120
(
3
), pp.
392
400
.
23.
Lan
,
C. C.
,
2008
, “
Analysis of Large-Displacement Compliant Mechanisms Using an Incremental Linearization Approach
,”
Mech. Mach. Theory
,
43
(
5
), pp.
641
658
.
24.
Awtar
,
S.
,
Shimotsu
,
K.
, and
Sen
,
S.
,
2010
, “
Elastic Averaging in Flexure Mechanisms: A Three-Beam Parallelogram Flexure Case Study
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041006
.
25.
Awtar
,
S.
, and
Sen
,
S.
,
2010
, “
A Generalized Constraint Model for Two-Dimensional Beam Flexures: Nonlinear Strain Energy Formulation
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081009
.
26.
Dunning
,
A. G.
,
Tolou
,
N.
,
Pluimers
,
P. P.
,
Kluit
,
L. F.
, and
Herder
,
J. L.
,
2012
, “
Bistable Compliant Mechanisms: Corrected Finite Element Modeling for Stiffness Tuning and Preloading Incorporation
,”
ASME J. Mech. Des.
,
134
(
8
), p.
084502
.
You do not currently have access to this content.