This paper addresses the force distribution of redundantly actuated cable-driven parallel robots (CDPRs). A new and efficient method is proposed for the determination of the lower-boundary of cable forces, including the pose-dependent lower-boundaries. In addition, the effect of cable sag is considered in the calculation of the force distribution to improve the computational accuracy. Simulations are made on a 6DOF CDPR driven by eight cables to demonstrate the validity of the proposed method. Results indicate that the pose-dependent lower-boundary method is more efficient than the fixed lower-boundary method in terms of minimizing the motor size and reducing energy consumption.

References

1.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, Vol.
128
,
Springer
, Dordrecht.
2.
Gosselin
,
C.
,
1990
, “
Stiffness Mapping for Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
377
382
.
3.
Pott
,
A.
,
2010
, “
An Algorithm for Real-Time Forward Kinematics of Cable-Driven Parallel Robots
,”
Advances in Robot Kinematics: Motion in Man and Machine
,
Springer
, Dordrecht, pp.
529
538
.
4.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.-P.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.
5.
Kawamura
,
S.
, and
Ito
,
K.
,
1993
, “
A New Type of Master Robot for Teleoperation Using a Radial Wire Drive System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 1993
), Yokohama, Japan, July 26–30, Vol. 1, pp.
55
60
.
6.
Gosselin
,
C.
, and
Grenier
,
M.
,
2011
, “
On the Determination of the Force Distribution in Overconstrained Cable-Driven Parallel Mechanisms
,”
Meccanica
,
46
(
1
), pp.
3
15
.
7.
Mikelsons
,
L.
,
Bruckmann
,
T.
,
Hiller
,
M.
, and
Schramm
,
D.
,
2008
, “
A Real-Time Capable Force Calculation Algorithm for Redundant Tendon-Based Parallel Manipulators
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2008
), Pasadena, CA, May 19–23, pp.
3869
3874
.
8.
Pott
,
A.
,
Bruckmann
,
T.
, and
Mikelsons
,
L.
,
2009
, “
Closed-Form Force Distribution for Parallel Wire Robots
,”
Computational Kinematics
,
Springer
, Berlin, pp.
25
34
.
9.
Khosravi
,
M.
, and
Taghirad
,
H.
,
2013
, “
Robust PID Control of Cable-Driven Robots With Elastic Cables
,”
First RSI/ISM International Conference on Robotics and Mechatronics
(
ICRoM 2013
), Tehran, Iran, Feb. 13–15, pp.
331
336
.
10.
Oh
,
S.-R.
, and
Agrawal
,
S. K.
,
2005
, “
Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
457
465
.
11.
Bruckmann
,
T.
,
Pott
,
A.
, and
Hiller
,
M.
,
2006
, “
Calculating Force Distributions for Redundantly Actuated Tendon-Based Stewart Platforms
,”
Advances in Robot Kinematics
,
Springer
, Dordrecht, pp.
403
412
.
12.
Kawamura
,
S.
,
Choe
,
W.
,
Tanaka
,
S.
, and
Pandian
,
S. R.
,
1995
, “
Development of an Ultrahigh Speed Robot FALCON Using Wire Drive System
,”
IEEE International Conference on Robotics and Automation
(
ICRA 1995
), Vol.
1
, Nagoya, Japan, May 21–27, pp.
215
220
.
13.
Fang
,
S.
,
Franitza
,
D.
,
Torlo
,
M.
,
Bekes
,
F.
, and
Hiller
,
M.
,
2004
, “
Motion Control of a Tendon-Based Parallel Manipulator Using Optimal Tension Distribution
,”
IEEE/ASME Trans. Mechatronics
,
9
(
3
), pp.
561
568
.
14.
Hassan
,
M.
, and
Khajepour
,
A.
,
2008
, “
Optimization of Actuator Forces in Cable-Based Parallel Manipulators Using Convex Analysis
,”
IEEE Trans. Rob.
,
24
(
3
), pp.
736
740
.
15.
Lim
,
W. B.
,
Yang
,
G.
,
Yeo
,
S. H.
, and
Mustafa
,
S. K.
,
2011
, “
A Generic Force-Closure Analysis Algorithm for Cable-Driven Parallel Manipulators
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1265
1275
.
16.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2015
, “
Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,”
Mech. Mach. Theory
,
85
, pp.
64
81
.
17.
Pott
,
A.
,
2014
, “
On the Limitations on the Lower and Upper Tensions for Cable-Driven Parallel Robots
,”
Advances in Robot Kinematics
,
J.
Lenarčič
and
O.
Khatib
, eds.,
Springer International Publishing
, Cham, Switzerland, pp.
243
251
.
18.
Arsenault
,
M.
,
2013
, “
Workspace and Stiffness Analysis of a Three-Degree-of-Freedom Spatial Cable-Suspended Parallel Mechanism While Considering Cable Mass
,”
Mech. Mach. Theory
,
66
, pp.
1
13
.
19.
Irvine
,
H.
,
1992
,
Cable Structures
,
Dover Books on Engineering, Dover Publications
, Portland, OR.
20.
Yuan
,
H.
,
Courteille
,
E.
, and
Deblaise
,
D.
,
2014
, “
Elastodynamic Analysis of Cable-Driven Parallel Manipulators Considering Dynamic Stiffness of Sagging Cables
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2014
), Hong Kong, May 31–June 7, pp.
4055
4060
.
21.
Bruckmann
,
T.
,
Sturm
,
C.
, and
Lalo
,
W.
,
2010
, “
Wire Robot Suspension Systems for Wind Tunnels
,”
Wind Tunnels and Experimental Fluid Dynamics Research
, InTech, Rijeka, Croatia, pp.
29
50
.
22.
Du
,
J.
,
Bao
,
H.
,
Cui
,
C.
, and
Yang
,
D.
,
2012
, “
Dynamic Analysis of Cable-Driven Parallel Manipulators With Time-Varying Cable Lengths
,”
Finite Elements in Analysis and Design
,
48
(
1
), pp.
1392
1399
.
23.
Irvine
,
H. M.
,
1978
, “
Free Vibrations of Inclined Cables
,”
J. Struct. Div.
,
104
(
2
), pp.
343
347
.
24.
Starossek
,
U.
,
1991
, “
Dynamic Stiffness Matrix of Sagging Cable
,”
J. Eng. Mech.
,
117
(
12
), pp.
2815
2828
.
25.
Nemirovskii
,
A.
, and
Yudin
,
D.
,
1983
,
Problem Complexity and Method Efficiency in Optimization
,
Wiley-Interscience Series in Discrete Mathematics
, Chichester, UK.
26.
Nahon
,
M. A.
, and
Angeles
,
J.
,
1992
, “
Real-Time Force Optimization in Parallel Kinematic Chains Under Inequality Constraints
,”
IEEE Trans. Rob. Autom.
,
8
(
4
), pp.
439
450
.
You do not currently have access to this content.