This paper addresses the force distribution of redundantly actuated cable-driven parallel robots (CDPRs). A new and efficient method is proposed for the determination of the lower-boundary of cable forces, including the pose-dependent lower-boundaries. In addition, the effect of cable sag is considered in the calculation of the force distribution to improve the computational accuracy. Simulations are made on a 6DOF CDPR driven by eight cables to demonstrate the validity of the proposed method. Results indicate that the pose-dependent lower-boundary method is more efficient than the fixed lower-boundary method in terms of minimizing the motor size and reducing energy consumption.
References
1.
Merlet
, J.-P.
, 2006
, Parallel Robots
, Vol. 128
, Springer
, Dordrecht.2.
Gosselin
, C.
, 1990
, “Stiffness Mapping for Parallel Manipulators
,” IEEE Trans. Rob. Autom.
, 6
(3
), pp. 377
–382
.3.
Pott
, A.
, 2010
, “An Algorithm for Real-Time Forward Kinematics of Cable-Driven Parallel Robots
,” Advances in Robot Kinematics: Motion in Man and Machine
, Springer
, Dordrecht, pp. 529
–538
.4.
Gouttefarde
, M.
, Daney
, D.
, and Merlet
, J.-P.
, 2011
, “Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,” IEEE Trans. Rob.
, 27
(1
), pp. 1
–13
.5.
Kawamura
, S.
, and Ito
, K.
, 1993
, “A New Type of Master Robot for Teleoperation Using a Radial Wire Drive System
,” IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 1993
), Yokohama, Japan, July 26–30, Vol. 1, pp. 55
–60
.6.
Gosselin
, C.
, and Grenier
, M.
, 2011
, “On the Determination of the Force Distribution in Overconstrained Cable-Driven Parallel Mechanisms
,” Meccanica
, 46
(1
), pp. 3
–15
.7.
Mikelsons
, L.
, Bruckmann
, T.
, Hiller
, M.
, and Schramm
, D.
, 2008
, “A Real-Time Capable Force Calculation Algorithm for Redundant Tendon-Based Parallel Manipulators
,” IEEE International Conference on Robotics and Automation
(ICRA 2008
), Pasadena, CA, May 19–23, pp. 3869
–3874
.8.
Pott
, A.
, Bruckmann
, T.
, and Mikelsons
, L.
, 2009
, “Closed-Form Force Distribution for Parallel Wire Robots
,” Computational Kinematics
, Springer
, Berlin, pp. 25
–34
.9.
Khosravi
, M.
, and Taghirad
, H.
, 2013
, “Robust PID Control of Cable-Driven Robots With Elastic Cables
,” First RSI/ISM International Conference on Robotics and Mechatronics
(ICRoM 2013
), Tehran, Iran, Feb. 13–15, pp. 331
–336
.10.
Oh
, S.-R.
, and Agrawal
, S. K.
, 2005
, “Cable Suspended Planar Robots With Redundant Cables: Controllers With Positive Tensions
,” IEEE Trans. Rob.
, 21
(3
), pp. 457
–465
.11.
Bruckmann
, T.
, Pott
, A.
, and Hiller
, M.
, 2006
, “Calculating Force Distributions for Redundantly Actuated Tendon-Based Stewart Platforms
,” Advances in Robot Kinematics
, Springer
, Dordrecht, pp. 403
–412
.12.
Kawamura
, S.
, Choe
, W.
, Tanaka
, S.
, and Pandian
, S. R.
, 1995
, “Development of an Ultrahigh Speed Robot FALCON Using Wire Drive System
,” IEEE International Conference on Robotics and Automation
(ICRA 1995
), Vol. 1
, Nagoya, Japan, May 21–27, pp. 215
–220
.13.
Fang
, S.
, Franitza
, D.
, Torlo
, M.
, Bekes
, F.
, and Hiller
, M.
, 2004
, “Motion Control of a Tendon-Based Parallel Manipulator Using Optimal Tension Distribution
,” IEEE/ASME Trans. Mechatronics
, 9
(3
), pp. 561
–568
.14.
Hassan
, M.
, and Khajepour
, A.
, 2008
, “Optimization of Actuator Forces in Cable-Based Parallel Manipulators Using Convex Analysis
,” IEEE Trans. Rob.
, 24
(3
), pp. 736
–740
.15.
Lim
, W. B.
, Yang
, G.
, Yeo
, S. H.
, and Mustafa
, S. K.
, 2011
, “A Generic Force-Closure Analysis Algorithm for Cable-Driven Parallel Manipulators
,” Mech. Mach. Theory
, 46
(9
), pp. 1265
–1275
.16.
Yuan
, H.
, Courteille
, E.
, and Deblaise
, D.
, 2015
, “Static and Dynamic Stiffness Analyses of Cable-Driven Parallel Robots With Non-Negligible Cable Mass and Elasticity
,” Mech. Mach. Theory
, 85
, pp. 64
–81
.17.
Pott
, A.
, 2014
, “On the Limitations on the Lower and Upper Tensions for Cable-Driven Parallel Robots
,” Advances in Robot Kinematics
, J.
Lenarčič
and O.
Khatib
, eds., Springer International Publishing
, Cham, Switzerland, pp. 243
–251
.18.
Arsenault
, M.
, 2013
, “Workspace and Stiffness Analysis of a Three-Degree-of-Freedom Spatial Cable-Suspended Parallel Mechanism While Considering Cable Mass
,” Mech. Mach. Theory
, 66
, pp. 1
–13
.19.
Irvine
, H.
, 1992
, Cable Structures
, Dover Books on Engineering, Dover Publications
, Portland, OR.20.
Yuan
, H.
, Courteille
, E.
, and Deblaise
, D.
, 2014
, “Elastodynamic Analysis of Cable-Driven Parallel Manipulators Considering Dynamic Stiffness of Sagging Cables
,” IEEE International Conference on Robotics and Automation
(ICRA 2014
), Hong Kong, May 31–June 7, pp. 4055
–4060
.21.
Bruckmann
, T.
, Sturm
, C.
, and Lalo
, W.
, 2010
, “Wire Robot Suspension Systems for Wind Tunnels
,” Wind Tunnels and Experimental Fluid Dynamics Research
, InTech, Rijeka, Croatia, pp. 29
–50
.22.
Du
, J.
, Bao
, H.
, Cui
, C.
, and Yang
, D.
, 2012
, “Dynamic Analysis of Cable-Driven Parallel Manipulators With Time-Varying Cable Lengths
,” Finite Elements in Analysis and Design
, 48
(1
), pp. 1392
–1399
.23.
Irvine
, H. M.
, 1978
, “Free Vibrations of Inclined Cables
,” J. Struct. Div.
, 104
(2
), pp. 343
–347
.24.
Starossek
, U.
, 1991
, “Dynamic Stiffness Matrix of Sagging Cable
,” J. Eng. Mech.
, 117
(12
), pp. 2815
–2828
.25.
Nemirovskii
, A.
, and Yudin
, D.
, 1983
, Problem Complexity and Method Efficiency in Optimization
, Wiley-Interscience Series in Discrete Mathematics
, Chichester, UK.26.
Nahon
, M. A.
, and Angeles
, J.
, 1992
, “Real-Time Force Optimization in Parallel Kinematic Chains Under Inequality Constraints
,” IEEE Trans. Rob. Autom.
, 8
(4
), pp. 439
–450
.Copyright © 2016 by ASME
You do not currently have access to this content.