The unified formulation of dimensional synthesis of Stephenson linkages for motion generation is the subject of this paper. Burmester theory is applied to the six-bar linkage, which leads to a unified formulation applicable for all three types of Stephenson linkages. This is made possible by virtue of parameterized position vectors, which simplify the formulation of synthesis equations. A design example is included to demonstrate the application of the method developed.
Issue Section:
Research Papers
References
1.
Shen
, Q.
, Lee
, W.-T.
, Russell
, K.
, and Sodhi
, R. S.
, 2008
, “On Motion Generation of Watt I Mechanisms for Mechanical Finger Design
,” Trans. CSME
, 32
(3–4
), pp. 411
–421
.2.
McLarnan
, C. W.
, 1963
, “Synthesis of Six-Link Plane Mechanisms by Numerical Analysis
,” ASME J. Eng. Ind.
, 85
(1
), pp. 5
–10
.3.
Kim
, H. S.
, Hamid
, S.
, and Soni
, A. H.
, 1972
, “Synthesis of Six-Link Mechanisms for Point Path Generation
,” J. Mech.
, 6
(4
), pp. 447
–461
.4.
Soh
, G. S.
, and McCarthy
, J. M.
, 2008
, “The Synthesis of Six-Bar Linkages as Constrained Planar 3R Chains
,” Mech. Mach. Theory
, 43
(2
), pp. 160
–170
.5.
Shiakolas
, P. S.
, Koladiya
, D.
, and Kebrle
, J.
, 2005
, “On the Optimum Synthesis of Six-Bar Linkages Using Differential Evolution and the Geometric Centroid of Precision Positions Technique
,” Mech. Mach. Theory
, 40
(3
), pp. 319
–335
.6.
Todorov
, T. S.
, 1997
, “Synthesis of Watt's Six-Link Mechanism for Manipulation Action in Relative Space
,” Mech. Mach. Theory
, 32
(5
), pp. 559
–568
.7.
Dong
, H.
, and Wang
, D.
, 2007
, “New Approach for Optimum Synthesis of Six-Bar Dwell Mechanisms by Adaptive Curve Fitting
,” Twelfth World Congress in Mechanism and Machine Science
(IFToMM 2007
), Besançon, France, June 17–21, pp. 17
–21
.8.
Liu
, Y.
, and McPhee
, J.
, 2007
, “Automated Kinematic Synthesis of Planar Mechanisms With Revolute Joints
,” Mech. Based Des. Struct. Mach.
, 35
(4
), pp. 405
–445
.9.
Bulatović
, R. R.
, and Dornević
, S. R.
, 2012
, “Optimal Synthesis of a Path Generator Six-Bar Linkage
,” J. Mech. Sci. Technol.
, 26
(12
), pp. 4027
–4040
.10.
Kinzel
, E. C.
, Schmiedeler
, J. P.
, and Pennock
, G. R.
, 2007
, “Function Generation With Finitely Separated Precision Points Using Geometric Constraint Programming
,” ASME J. Mech. Des.
, 129
(11
), pp. 1185
–1190
.11.
Hwang
, W. M.
, and Chen
, Y. J.
, 2010
, “Defect-Free Synthesis of Stephenson-II Function Generators
,” ASME J. Mech. Rob.
, 2
(4
), p. 041012
.12.
Mirth
, J. A.
, and Chase
, T. R.
, 1995
, “Circuit Rectification for Four Precision Position Synthesis of Stephenson Six-Bar Linkages
,” ASME J. Mech. Des.
, 117
(4
), pp. 644
–646
.13.
Ting
, K. L.
, and Dou
, X.
, 1996
, “Classification and Branch Identification of Stephenson Six-Bar Chains
,” Mech. Mach. Theory
, 31
(3
), pp. 283
–295
.14.
Plecnik
, M.
, McCarthy
, J. M.
, and Wampler
, C. W.
, 2014
, “Kinematic Synthesis of a Watt I Six-Bar Linkage for Body Guidance
,” Advances in Robot Kinematics
, Springer
, Cham, Switzerland
, pp. 317
–325
.15.
McCarthy
, J. M.
, and Soh
, G. S.
, 2011
, Geometric Design of Linkages
, Springer
, New York
.16.
Hunt
, K. H.
, 1978
, Kinematic Geometry of Mechanisms
, Oxford University Press
, New York
.17.
Chiang
, C. H.
, 1988
, Kinematics of Spherical Mechanism
, Cambridge University Press
, Cambridge, UK
.18.
Bai
, S.
, and Angeles
, J.
, 2012
, “A Robust Solution of the Spatial Burmester Problem
,” ASME J. Mech. Rob.
, 4
(3
), p. 031003
.19.
Bottema
, O.
, and Roth
, B.
, 1979
, Theoretical Kinematics
, North-Holland
, New York
.20.
Riva
, R.
, 1981
, “Synthesis of Stephenson's Six-Bar Linkages by an Interactive Technique
,” Meccanica
, 16
(3
), pp. 157
–166
.Copyright © 2016 by ASME
You do not currently have access to this content.