The paper examines the static behavior of the inverted planetary roller screw (PRS) through numerical and experimental studies. The numerical analysis of the inverted PRS is first presented to capture the global and local deformations in different configurations. Using a three-dimensional finite element (3D FE) method, a sectorial model of the mechanism is built involving an entire roller. The model describes the static behavior of the system under a heavy load and shows the state of the contacts and the in-depth stress zones. The current work also investigates the axial stiffness (AS) and the load distribution (LD) under both compressive and tensile loadings. It is shown that the LDs are not the same at each contact interface of the roller and that they depend on the configuration of the system. Also, the nut is less stressed than the screw shaft because of their contact curvatures. In parallel, complementary experiments are carried out to measure the axial deflection of the screw shaft and the rollers in five cases with different numbers of rollers. In each situation, the mechanism is under the same equivalent axial and static load. The tests reveal that rollers do not have the same behavior, the difference certainly being due to manufacturing and positioning errors that directly affect the number of effective contacts in the device. This stresses the fact that the external load is unequally shared over rollers and contacting threads. By introducing the notion of an equivalent roller, the results are used to validate the previous numerical model of an inverted PRS. As they provide a better understanding of the inverted PRS, these investigations are useful to improve the existing analytical models of the device.

References

1.
Davis
,
P. K.
,
Rosenberg
,
G.
,
Snyder
,
A. J.
, and
Pierce
,
W. S.
,
1989
, “
Current Status of Permanent Total Artificial Hearts
,”
Ann. Thorac. Surg.
,
47
(
1
), pp.
172
178
.
2.
Lemor
,
P. C.
,
1996
, “
The Roller Screw, an Efficient and Reliable Mechanical Component of Electromechanical Actuators
,”
31st International Energy Conversion Engineering Conference
(
IECEC 96
), Washington, DC, Aug. 11–16, Vol.
1
, pp.
215
220
.
3.
Hojat
,
Y.
, and
Agheli
,
M.
,
2009
, “
A Comprehensive Study on Capabilities and Limitations of Roller Screw With Emphasis on Slip Tendency
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1887
1899
.
4.
Ma
,
S.-J.
,
Liu
,
G.
,
Zhou
,
J.-X.
, and
Tong
,
R.-T.
,
2011
, “
Optimal Design and Contact Analysis for Planetary Roller Screw
,”
Appl. Mech. Mater.
,
86
, pp.
361
364
.
5.
Ma
,
S.-J.
,
Liu
,
G.
,
Tong
,
R.-T.
, and
Zhang
,
X.
,
2012
, “
A New Study on the Parameter Relationships of Planetary Roller Screws
,”
Math. Probl. Eng.
,
2012
, p.
340437
.
6.
Zhang
,
X.
,
Liu
,
G.
,
Ma
,
S.-J.
,
Tong
,
R.-T.
, and
Luo
,
H.
,
2012
, “
A Study on Axial Contact Deformation of Planetary Roller Screws
,”
Appl. Mech. Mater.
,
155–156
, pp.
779
783
.
7.
Ma
,
S.-J.
,
Liu
,
G.
,
Tong
,
R.-T.
, and
Fu
,
X.
,
2014
, “
A Frictional Heat Model of Planetary Roller Screw Mechanism Considering Load Distribution
,”
Mech. Based Des. Struct. Mach.: Int. J.
,
43
(
2
), pp.
164
182
.
8.
Ma
,
S.-J.
,
Liu
,
G.
,
Tong
,
R.-T.
, and
Fu
,
X.
,
2014
, “
Thermo-Mechanical Model and Thermal Analysis of Hollow Cylinder Planetary Roller Screw Mechanism
,”
Mech. Based Des. Struct. Mach.: Int. J.
,
43
(
3
), pp.
359
381
.
9.
Ma
,
S.-J.
,
Zhang
,
T.
,
Liu
,
G.
,
Tong
,
R.-T.
, and
Fu
,
X.
,
2015
, “
Kinematics of Planetary Roller Screw Mechanism Considering Helical Directions of Screw and Roller Threads
,”
Math. Probl. Eng.
,
2015
, p.
459462
.
10.
Zhang
,
W.
,
Liu
,
G.
,
Tong
,
R.-T.
, and
Ma
,
S.-J.
,
2015
, “
Load Distribution of Planetary Roller Screw Mechanism and Its Improvement Approach
,”
Proc. Inst. Mech. Eng., Part C
, epub.
11.
Rys
,
J.
, and
Lisowski
,
F.
,
2014
, “
The Computational Model of the Load Distribution Between Elements in Planetary Roller Screw
,”
J. Theor. Appl. Mech.
,
52
(
3
), pp.
699
705
.
12.
Lisowski
,
F.
,
2014
, “
The Analysis of Displacements and the Load Distribution Between Elements in a Planetary Roller Screw
,”
Appl. Mech. Mater.
,
680
, pp.
326
329
.
13.
Abévi
,
F. K.
,
Daidie
,
A.
,
Chaussumier
,
M.
, and
Sartor
,
M.
,
2015
, “
Static Load Distribution and Axial Stiffness in a Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
138
(
1
), p.
012301
.
14.
Velinsky
,
A.
,
Chu
,
B.
, and
Lasky
,
T. A.
,
2009
, “
Kinematics and Efficiency Analysis of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011016
.
15.
Jones
,
M. H.
, and
Velinsky
,
A.
,
2012
, “
Kinematics of Roller Migration in the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
134
(
6
), p.
061006
.
16.
Jones
,
M. H.
, and
Velinsky
,
A.
,
2013
, “
Contact Kinematics in the Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051003
.
17.
Jones
,
M. H.
, and
Velinsky
,
A.
,
2014
, “
Stiffness of the Roller Screw Mechanism by the Direct Method
,”
Mech. Based Des. Struct. Mach.: Int. J.
,
42
(
1
), pp.
17
34
.
18.
Jones
,
M. H.
,
Velinsky
,
A.
, and
Lasky
,
T. A.
,
2015
, “
Dynamics of the Planetary Roller Screw Mechanism
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
014503
.
19.
Tselishchev
,
A. S.
, and
Zharov
,
I. S.
,
2008
, “
Elastic Elements in Roller-Screw Mechanisms
,”
Russ. Eng. Res.
,
28
(
11
), pp.
1040
1043
.
20.
Sokolov
,
P. A.
,
Blinov
,
D. S.
,
Ryakhovskii
,
O. A.
,
Ochkasov
,
E. E.
, and
Drobizheva
,
A. Y.
,
2008
, “
Promising Rotation-Translation Converters
,”
Russ. Eng. Res.
,
28
(
10
), pp.
949
956
.
21.
Morozov
,
V. V.
,
2011
, “
кинематические характеристики планетарных роликовинтовых механизмов с фрикционным характером зацеплений (The Kinematic Characteristics of a Planetary Roller Screw Mechanism With Friction Character Links)
,”
Mod. Probl. Sci. Educ.
,
2011
(
6
), pp.
1
6
.
22.
Shinakov
,
I. V.
,
Zhdanov
,
A. V.
, and
Kuznetsova
,
S. V.
,
2012
, “
роликовинтовые механизмы с дополнительным зубчатым замыканием звеньев (Roller Screw Mechanism With Extra Gear Circuit Links)
,”
Fundam. Res.
,
2012
(
3
), pp.
145
148
.
23.
Ryakhovskiy
,
O. A.
,
Vorob'ev
,
A. N.
, and
Marokhin
,
A. S.
,
2013
, “
Планетарный ролико-винтовой механизм преобразования вращательного движения в поступательное, выполненный по «перевернутой» схеме (An Inverted Planetary Roller Screw Mechanism for Converting Rotary Motion Into Linear)
,”
Proc. Higher Educ. Inst. Mach. Build.
,
9
(
642
), pp.
44
48
.
24.
Zhang
,
D.-W.
, and
Zhao
,
S.-D.
,
2014
, “
New Method for Forming Shaft Having Thread and Spline by Rolling With Round Dies
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5
), pp.
1455
1462
.
25.
Zhang
,
D.-W.
,
Zhao
,
S.-D.
,
Wu
,
S.-B.
,
Zhang
,
Q.
,
Fan
,
S.-Q.
, and
Li
,
J.
,
2015
, “
Phase Characteristic Between Dies Before Rolling for Thread and Spline Synchronous Rolling Process
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1
), pp.
513
528
.
26.
Liu
,
Y.
, and
Wang
,
J.
,
2014
, “
Simulation of a Crossing Threaded Planetary Roller Screw engagement
,”
Adv. Mater. Res.
,
889–890
, pp.
518
526
.
27.
Liu
,
Y.
,
Wang
,
J.
,
Cheng
,
H.
, and
Sun
,
Y.
,
2015
, “
Kinematics Analysis of the Roller Screw Based on the Accuracy of Meshing Point Calculation
,”
Math. Probl. Eng.
,
2015
, p.
303972
.
28.
Falkner
,
M.
,
Nitschko
,
T.
,
Supper
,
L.
,
Traxler
,
G.
,
Zemann
,
J. V.
, and
Roberts
,
E. W.
,
2003
, “
Roller Screw Lifetime Under Oscillatory Motion: From Dry to Liquid Lubrication
,”
10th European Space Mechanisms and Tribology Symposium
, San Sebastián, Spain, Sept. 24–26, pp.
297
302
.
29.
Pochettino
,
P.
,
Ballesio
,
M.
,
Gallieni
,
D.
, and
Gill
,
S.
,
1999
, “
Hexapod/Sage III Roller Screws Lifetime and Lubrication Tests
,”
8th European Space Mechanisms and Tribology Symposium
(
ESMATS
), Toulouse, France, Sept. 29–Oct. 1, Vol.
438
, pp.
49
56
.
30.
Karam
,
W.
, and
Mare
,
J.-C.
,
2009
, “
Modelling and Simulation of Mechanical Transmission in Roller-Screw Electromechanical Actuators
,”
Aircr. Eng. Aerosp. Technol.
,
81
(
4
), pp.
288
298
.
31.
Aurégan
,
G.
,
Fridrici
,
V.
,
Kapsa
,
Ph.
, and
Rodrigues
,
F.
,
2015
, “
Experimental Simulation of Rolling–Sliding Contact for Application to Planetary Roller Screw Mechanism
,”
Wear
,
332–333
, pp.
1176
1184
.
32.
Otsuka
,
J.
,
Fukada
,
S.
, and
Osawa
,
T.
,
1987
, “
Fundamental Study of Planetary Screw-Structure and Coefficient of Friction
,”
Bull. Jpn. Soc. Precis. Eng.
,
21
(
1
), pp.
43
48
.
33.
Otsuka
,
J.
,
Osawa
,
T.
, and
Fukada
,
S.
,
1989
, “
A Study on the Planetary Roller Screw. Comparison of Static Stiffness and Vibration Characteristics With Those of the Ball Screw
,”
Bull. Jpn. Soc. Precis. Eng.
,
23
(
3
), pp.
217
223
.
34.
De La Chevasnerie
,
A.
,
Grand
,
S.
,
Legrand
,
B.
, and
Sandler
,
S.
,
2010
, “
Electromechanical Actuator/MOET Project
,”
International Conference on Recent Advances in Aerospace Hydraulics
, Toulouse, France, May 5–7, pp.
83
87
.
35.
Abévi
,
F. K.
,
2013
, “
Development of a Support Tool for the Preliminary Design of a Planetary Roller Screw Under Complex Loadings
,” Ph.D. thesis, Institut Clément ADER (ICA) of INSA de Toulouse, Toulouse, France.
36.
SKF
,
2014
, “
Roller Screws
,” SKF Group, Gothenburg, Sweden, accessed Jan. 28, 2016, http://www.skf.com/binary/82-153959/14489-EN—Roller-screw-catalogue.pdf
You do not currently have access to this content.