The solution for positive wire tension vector in the presence of uncertainties in design parameters and error in data is investigated for parallel manipulators. The minimum 2-norm non-negative solution and enclosures for the vector of wire tensions are formulated utilizing the perturbed and the interval forms of Jacobian matrix and platform wrench. Methodologies for calculating the minimum 2-norm non-negative solution set of wire tension vector, for interval Jacobian matrix and interval external wrench, are presented. Example parallel manipulators are simulated to investigate the implementation and effectiveness of these methodologies while relating their results.
Issue Section:
Technical Brief
Keywords:
Cable driven mechanisms
References
1.
Dagalakis
, N. G.
, Albus
, J. S.
, Wang
, B.-L.
, Unger
, J.
, and Lee
, J. D.
, 1989
, “Stiffness Study of a Parallel Link Robot Crane for Shipbuilding Applications
,” ASME J. Offshore Mech. Arct. Eng.
, 111
(3
), pp. 183
–193
.2.
Kawamura
, S.
, and Ito
, K.
, 1993
, “A New Type of Master Robot for Teleoperation Using a Radial Wire Drive System
,” IEEE/RSJ International Conference Intelligent Robots and Systems
(IROS '93
), Yokohama, Japan, July 26–30, pp. 55
–60
.3.
Landsberger
, S. E.
, and Sheridan
, T. B.
, 1993
, “A Minimal, Minimal Linkage: The Tension-Compression Parallel Link Manipulator
,” Robot Mechatronis and Manufacturing Systems
, Elsevier, Amsterdam, pp. 81
–88
.4.
Mroz
, G.
, and Notash
, L.
, 2004
, “Design and Prototype of Parallel, Wire-Actuated Robots With a Constraining Linkage
,” J. Rob. Syst.
, 21
(12
), pp. 677
–687
.5.
Notash
, L.
, 2012
, “Failure Recovery for Wrench Capability of Wire-Actuated Parallel Manipulators
,” Robotica
, 30
(6
), pp. 941
–950
.6.
Notash
, L.
, 2013
, “Designing Positive Tension for Wire-Actuated Parallel Manipulators
,” Advances in Mechanisms, Robotics and Design Education and Research
, V.
Kumar
, J.
Schmiedeler
, S. V.
Sreenivasan
, H.-J.
Su
, eds., Springer
, Cham, Switzerland
, pp. 251
–263
.7.
Pott
, A.
, Bruckmann
, T.
, and Mikelsons
, L.
, 2009
, “Closed-Form Force Distribution for Parallel Wire Robots
,” Computational Kinematics
, Springer
, Berlin
, pp. 25
–34
.8.
Stump
, E.
, and Kumar
, V.
, 2006
, “Workspace of Cable-Actuated Parallel Manipulators
,” ASME J. Mech. Des.
, 128
(1
), pp. 159
–167
.9.
Bosscher
, P.
, Riechel
, A. T.
, and Ebert-Uphoff
, I.
, 2006
, “Wrench-Feasible Workspace Generation for Cable-Driven Robots
,” IEEE Trans. Rob.
, 22
(5
), pp. 890
–902
.10.
McColl
, D.
, and Notash
, L.
, 2010
, “Workspace Generation of Planar Wire-Actuated Parallel Manipulators With Antipodal Method
,” RoManSy 18 Robot Design, Dynamics and Control
, Springer Wein
, New York
, pp. 291
–298
.11.
McColl
, D.
, and Notash
, L.
, 2011
, “Workspace Formulation of Planar Wire-Actuated Parallel Manipulators
,” Robotica
, 29
(4
), pp. 607
–617
.12.
Merlet
, J.-P.
, 2009
, “Interval Analysis for Certified Numerical Solution of Problems in Robotics
,” Int. J. Appl. Math. Comput. Sci.
, 19
(3
), pp. 399
–412
.13.
Hansen
, E.
, 1992
, Global Optimization Using Interval Analysis
, Marcel Dekker
, New York
.14.
Moore
, R.
, Kearfott
, R. B.
, and Cloud
, M. J.
, 2009
, Introduction to Interval Analysis
, SIAM
, Philadelphia, PA
.15.
Notash
, L.
, 2015
, “Analytical Methods for Solution Sets of Interval Wrench
,” ASME
Paper No. DETC2015-47575.16.
Oettli
, W.
, 1965
, “On the Solution Set of a Linear System With Inaccurate Coefficients
,” SIAM J. Numer. Anal., Ser. B
, 2
(1
), pp. 115
–118
.17.
Hartfiel
, D.
, 1980
, “Concerning the Solution Set of Ax = b Where P ≦ A ≦ Q and p ≦ b ≦ q
,” Numer. Math.
, 35
(3
), pp. 355
–359
.18.
Popova
, E. D.
, and Krämer
, W.
, 2008
, “Visualizing Parametric Solution Sets
,” BIT Numer. Math.
, 48
(1
), pp. 95
–115
.19.
Gouttefarde
, M.
, Daney
, D.
, and Merlet
, J. P.
, 2011
, “Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,” IEEE Trans. Rob.
, 27
(1
), pp. 1
–13
.20.
Nazari
, V.
, and Notash
, L.
, 2014
, “Parametric Method for Motion Analysis of Manipulators With Uncertainty in Kinematic Parameters
,” RoManSy 20—Advances on Theory and Practice of Robots and Manipulators
, Springer
, Cham, Switzerland
, pp. 9
–17
.21.
Notash
, L.
, 2013
, “Wrench Recovery for Wire-Actuated Parallel Manipulators
,” RoManSy 19—Robot Design, Dynamics and Control
, Springer
, Vienna
, pp. 201
–208
.22.
Kearfott
, R. B.
, 1996
, Rigorous Global Search: Continuous Problems
, Kluwer Academic
, Dordrecht
.23.
Rump
, S. M.
, 2012
, “Verified Bounds for Least Squares Problems and Underdetermined Linear System
,” SIAM J. Matrix Anal. Appl.
, 33
(1
), pp. 130
–148
.24.
Fiedler
, M.
, Nedoma
, J.
, Ramik
, J.
, Rohn
, J.
, and Zimmermann
, K.
, 2006
, Linear Optimization Problems With Inexact Data
, Springer
, New York
.25.
Kupriyanova
, L.
, 1995
, “Inner Estimation of the United Solution Set of Interval Linear Algebraic System
,” Reliab. Comput.
, 1
(1
), pp. 15
–31
.26.
Stewart
, G. W.
, and Sun
, J.-G.
, 1990
, Matrix Perturbation Theory
, Academic Press
, Cambridge, MA
.27.
Rump
, S. M.
, 1999
, “INTLAB—INTerval LABoratory
,” Developments in Reliable Computing
, T.
Csendes
, ed., Kluwer Academic Publishers
, Dordrecht
, pp. 77
–104
.Copyright © 2016 by ASME
You do not currently have access to this content.