Reconfigurable structures based on origami design are useful for multifunctional applications, such as deployable shelters, solar array packaging, and tunable antennas. Origami provides a framework to decompose a complex 2D to 3D transformation into a series of folding operations about predetermined foldlines. Recent optimization toolsets have begun to enable a systematic search of the design space to optimize not only geometry but also mechanical performance criteria as well. However, selecting optimal fold patterns for large folding operations is challenging as geometric nonlinearity influences fold choice throughout the evolution. The present work investigates strategies for design optimization to incorporate the current and future configurations of the structure in the performance evaluation. An optimization method, combined with finite-element analysis, is used to distribute mechanical properties within an initially flat structure to determine optimal crease patterns to achieve desired motions. Out-of-plane and twist displacement objectives are used in three examples. The influence of load increment and geometric nonlinearity on the choice of crease patterns is studied, and appropriate optimization strategies are discussed.
Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding
Wright State Research Institute,
4035 Colonel Glenn Highway,
Suite 200,
Beavercreek, OH 45431
e-mail: kazuko.fuchi@wright.edu
Air Force Research Laboratory,
Wright-Patterson AFB, OH 45433
e-mail: philip.buskohl.1@us.af.mil
Air Force Research Laboratory,
Wright-Patterson AFB, OH 45433
e-mail: michael.durstock@us.af.mil
Aerospace Systems Directorate,
Air Force Research Laboratory,
2210 Eighth Street,
WPAFB, OH 45433
e-mail: gregory.reich.1@us.af.mil
Air Force Research Laboratory,
Wright-Patterson AFB, OH 45433
e-mail: richard.vaia@us.af.mil
Aerospace Systems Directorate,
Air Force Research Laboratory,
2210 Eighth Street,
Wright-Patterson AFB, OH 45433
e-mail: james.joo.1@us.af.mil
Wright State Research Institute,
4035 Colonel Glenn Highway,
Suite 200,
Beavercreek, OH 45431
e-mail: kazuko.fuchi@wright.edu
Air Force Research Laboratory,
Wright-Patterson AFB, OH 45433
e-mail: philip.buskohl.1@us.af.mil
Air Force Research Laboratory,
Wright-Patterson AFB, OH 45433
e-mail: michael.durstock@us.af.mil
Aerospace Systems Directorate,
Air Force Research Laboratory,
2210 Eighth Street,
WPAFB, OH 45433
e-mail: gregory.reich.1@us.af.mil
Air Force Research Laboratory,
Wright-Patterson AFB, OH 45433
e-mail: richard.vaia@us.af.mil
Aerospace Systems Directorate,
Air Force Research Laboratory,
2210 Eighth Street,
Wright-Patterson AFB, OH 45433
e-mail: james.joo.1@us.af.mil
Manuscript received September 14, 2015; final manuscript received December 11, 2015; published online May 4, 2016. Assoc. Editor: Andrew P. Murray. Adopted from conference paper DETC2015-47420.The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States government purposes.
Fuchi, K., Buskohl, P. R., Bazzan, G., Durstock, M. F., Reich, G. W., Vaia, R. A., and Joo, J. J. (May 4, 2016). "Design Optimization Challenges of Origami-Based Mechanisms With Sequenced Folding." ASME. J. Mechanisms Robotics. October 2016; 8(5): 051011. https://doi.org/10.1115/1.4032442
Download citation file: