In this paper, we have presented a unified framework for generating planar four-bar motions for a combination of poses and practical geometric constraints and its implementation in MotionGen app for Apple's iOS and Google's Android platforms. The framework is based on a unified type- and dimensional-synthesis algorithm for planar four-bar linkages for the motion-generation problem. Simplicity, high-utility, and wide-spread adoption of planar four-bar linkages have made them one of the most studied topics in kinematics leading to development of algorithms and theories that deal with path, function, and motion generation problems. Yet to date, there have been no attempts to develop efficient computational algorithms amenable to real-time computation of both type and dimensions of planar four-bar mechanisms for a given motion. MotionGen solves this problem in an intuitive fashion while providing high-level, rich options to enforce practical constraints. It is done effectively by extracting the geometric constraints of a given motion to provide the best dyad types as well as dimensions of a total of up to six four-bar linkages. The unified framework also admits a plurality of practical geometric constraints, such as imposition of fixed and moving pivot and line locations along with mixed exact and approximate synthesis scenarios.

References

1.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1997
,
Advanced Mechanism Design
:
Analysis and Synthesis
, Vol.
2
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2011
,
Theory of Machines and Mechanisms
, 4th ed.,
Oxford University Press
,
New York
.
3.
Norton
,
R.
,
2011
,
Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, 5th ed.,
McGraw Hill
,
New York
.
4.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer
,
New York
.
5.
Hunt
,
K.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford, UK
.
6.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
7.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1978
,
Kinematics and Mechanism Design
,
Wiley
,
New York
.
8.
Tsai
,
L.
,
2001
,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press LLC
,
Boca Raton, FL
.
9.
Mruthyunjaya
,
T.
,
2003
, “
Kinematic Structure of Mechanisms Revisited
,”
Mech. Mach. Theory
,
38
(
4
), pp.
279
320
.
10.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1991
,
Mechanism Design: Analysis and Synthesis
, Vol.
1
, 2nd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
11.
Eberhard
,
P.
,
Gaugele
,
T.
, and
Sedlaczek
,
K.
,
2009
, “
Topology Optimized Synthesis of Planar Kinematic Rigid Body Mechanisms
,”
Advanced Design of Mechanical Systems: From Analysis to Optimization
, J. A. C. Ambrósio and P. Eberhard, eds., Springer, Vienna, Austria, pp.
287
302
.
12.
Fang
,
W.
,
1994
, “
Simultaneous Type and Dimensional Synthesis of Mechanisms by Genetic Algorithms-DE
,”
Mech. Synth. Anal.
,
70
, pp.
35
41
.
13.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
14.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
,
2003
, “
A Computational Approach to the Number of Synthesis of Linkages
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
110
118
.
15.
Hayes
,
M.
, and
Zsombor-Murrary
,
P.
,
2004
, “
Towards Integrated Type and Dimensional Synthesis of Mechanisms for Rigid Body Guidance
,”
CSME
Forum
, London, ON, June 1–4, pp.
53
61
.
16.
Faltings
,
B.
,
1990
, “
Qualitative Kinematics in Mechanisms
,”
Artif. Intell.
,
44
(
1–2
), pp.
89
119
.
17.
Ge
,
Q. J.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2016
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME
Paper No. DETC2013-12977.
18.
Ge
,
Q. J.
,
Zhao
,
P.
,
Purwar
,
A.
, and
Li
,
X.
,
2012
, “
A Novel Approach to Algebraic Fitting of a Pencil of Quadrics for Planar 4R Motion Synthesis
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041003
.
19.
Purwar
,
A.
,
2016
, “
MotionGen's Support Site
,” Stonybrook University, Stonybrook, NY, accessed Feb. 2, 2017, http://www.motiongen.io
20.
Keengwe
,
J.
, and
Bhargava
,
M.
,
2013
, “
Mobile Learning and Integration of Mobile Technologies in Education
,”
Educ. Inf. Technol.
,
19
(
4
), pp.
737
746
.
21.
West
,
D. M.
,
2013
, “
Mobile Learning: Transforming Education, Engaging Students, and Improving Outcomes
,” The Brookings Institution, Washington, DC, accessed Jan. 25, 2016, http://www.brookings.edu/research/papers/2013/09/17-mobile-learning-education-engaging-students-west
22.
Purwar
,
A.
,
2016
, “
MotionGen for iOS
,” Stonybrook University, Stonybrook, NY, accessed Feb. 2, 2017, https://itunes.apple.com/us/app/motiongen/id1065657088?ls=1&mt=8
23.
Purwar
,
A.
,
2016
, “
MotionGen for Android
,” Stonybrook University, Stonybrook, NY, accessed Feb. 2, 2017, https://play.google.com/store/apps/details?id=com.stonybrookuniversity.motiongen&hl=en
24.
Rubel
,
A. J.
, and
Kaufman
,
R. E.
,
1977
, “
Kinsyn III: A New Human-Engineered System for Interactive Computer-Aided Design of Planar Linkages
,”
ASME J. Eng. Ind.
,
99
(
2
), pp.
440
448
.
25.
Erdman
,
A.
, and
Gustafson
,
J.
,
1981
, “
LINCAGES: Linkage Interactive Computer Analysis and Graphically Enhanced Synthesis Package
,” ASME Paper No. 77-DET-5.
26.
Erdman
,
A. G.
, and
Riley
,
D.
,
1981
, “
Computer-Aided Linkage Design Using the Linkages Package
,”
ASME
Paper No. 81-DET-121.
27.
Ruth
,
D.
, and
McCarthy
,
J.
,
1997
, “
Sphinxpc: An Implementation of Four Position Synthesis for Planar and Spherical 4R Linkages
,” ASME Paper No. DETC97/DAC-3860.
28.
Su
,
H.-J.
,
Collins
,
C.
, and
McCarthy
,
J.
,
2002
, “
An Extensible Java Applet for Spatial Linkage Synthesis
,”
ASME
Paper No. DETC2002/MECH-34371.
29.
Wu
,
J.
,
Purwar
,
A.
, and
Ge
,
Q. J.
,
2010
, “
Interactive Dimensional Synthesis and Motion Design of Planar 6R Single-Loop Closed Chains Via Constraint Manifold Modification
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
31012
.
30.
Purwar
,
A.
, and
Gupta
,
A.
, “
Visual Synthesis of RRR- and RPR-Legged Planar Parallel Manipulators Using Constraint Manifold Geometry
,”
ASME
Paper No. DETC2011-48830.
31.
Design Simulation Technologies
,
2017
, “
Working Model 2D
,” Design Simulation Technologies, Canton, MI, accessed Feb. 2, 2017, http://www.design-simulation.com/wm2d/
32.
Artas-Engineering
,
2017
, “
SAM (Synthesis and Analysis of Mechanisms)
,” Artas-Engineering Software, Nuenen, The Netherlands, accessed Feb. 2, 2017, http://www.artas.nl/en
33.
Norton Associates Engineering
,
2017
, “
Linkages
,” Norton Associates LLC, Naples, FL, accessed Feb. 2, 2017, http://www.designofmachinery.com/Linkage/
34.
KCP Technologies
,
2017
, “
The Geometer's Sketchpad
,” KCP Technologies Limited, Chennai, India, accessed Feb. 2, 2017, http://www.dynamicgeometry.com
35.
International GeoGebra Institute
,
2017
, “
Geogebra
,” International GeoGebra Institute, Germany, accessed Feb. 2, 2017, http://www.geogebra.org/cms/
36.
Autodesk
,
2017
, “
ForceEffectMotion
,” Autodesk, San Rafael, CA, accessed Feb. 2, 2017, http://www.autodesk.com/mobile-apps
37.
Turkkan
,
O. A.
, and
Su
,
H.-J.
,
2015
, “
A Software for Kinetostatic Synthesis of Compliant Mechanisms
,”
ASME
Paper No. DETC2015-47578.
38.
Kinzel
,
E. C.
,
Schmiedeler
,
J. P.
, and
Pennock
,
G. R.
,
2006
, “
Kinematic Synthesis for Finitely Separated Positions Using Geometric Constraint Programming
,”
ASME J. Mech. Des.
,
128
(
5
), pp.
1070
1079
.
39.
Moritz
,
B.
,
Stelian
,
C.
, and
Bernhard
,
T.
,
2015
, “
LinkEdit: Interactive Linkage Editing Using Symbolic Kinematics
,”
ACM Trans. Graphics
,
34
(
4
), pp.
1
8
.
40.
Bernhard
,
T.
,
Stelian
,
C.
,
Damien
,
G.
,
Vittorio
,
M.
,
Eitan
,
G.
, and
Markus
,
G.
,
2014
, “
Computational Design of Linkage-Based Characters
,”
ACM Trans. Graphics.
,
33
(
4
), pp.
1
9
.
41.
Chase
,
T.
,
Kinzel
,
G.
, and
Erdman
,
A.
,
2013
, “
Computer Aided Mechanism Synthesis: A Historical Perspective
,”
Advances in Mechanisms, Robotics and Design Education and Research
, Vol.
14
,
Springer International Publishing
,
Cham, Switzerland
, pp.
17
33
.
42.
Purwar
,
A.
,
Toravi
,
A.
, and
Ge
,
Q. J.
,
2014
, “
4MDS: A Geometric Constraint Based Motion Design Software for Synthesis and Simulation of Planar Four-Bar Linkages
,”
ASME
Paper No. DETC2014-35235.
43.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
44.
Ravani
,
B.
, and
Roth
,
B.
,
1983
, “
Motion Synthesis Using Kinematic Mappings
,”
ASME J. Mech. Transm. Autom. Des.
,
105
(
3
), pp.
460
467
.
45.
Ge
,
Q. J.
,
Zhao
,
P.
, and
Purwar
,
A.
,
2013
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME
Paper No. DETC2013-12977.
46.
Golub
,
G.
, and
Van Loan
,
C.
,
1996
,
Matrix Computations
,
Johns Hopkins University Press
,
Baltimore, MD
.
47.
Burmester
,
L.
,
1886
,
Lehrbuch der Kinematik
,
Verlag Von Arthur Felix
,
Leipzig, Germany
.
48.
Russell
,
K.
,
Shen
,
Q.
, and
Sodhi
,
R. S.
,
2014
,
Mechanism Design: Visual and Programmable Approaches
,
CRC Press
,
Boca Raton, FL
.
49.
Purwar
,
A.
, and
Ge
,
Q. J.
,
2012
, “
TALENT Grant: Design and Development of an Innovative Machine Design App for Engineers and Others, Teaching, Learning, and Technology Center
,” Stony Brook University, Stonybrook, NY, accessed Feb. 2, 2017, http://facultycenter.stonybrook.edu/pages/2012-grant-recipients
50.
Purwar
,
A.
,
Ge
,
Q. J.
, and
Aceves
,
P.
,
2013
, “
Freshman Design Innovation: SUNY Innovative Instruction Technology Grant (IITG)
,” State University of New York (SUNY),” accessed Feb. 2, 2017, http://commons.suny.edu/iitg/freshman-design-innovation/
You do not currently have access to this content.